HTTP APl manual for 2N
devices

2N

v.2.44 Www.2n.com

Content:

+ 1.Introduction
« 1.1 HTTP API Release Notes
« 2. HTTP API Description
+ 2.1 HTTP Methods
» 2.2 Request Parameters
+ 2.3 Replies to Requests
« 3. HTTP API Services Security
» 4. User Accounts
« 5. Overview of HTTP API Functions
« 5.1 apisystem
+ 5.1.1 api system info
« 5.1.2 api system status
« 5.1.3 api system restart
« 5.1.4 api system caps
« 5.1.5 api system time
« 5.1.6 api system time set
« 5.1.7 api system timezone
« 5.1.8 api system timezone caps
+ 5.2 apifirmware
+ 5.2.1 apifirmware
+ 5.2.2 api firmware apply
+ 5.2.3 api firmware reject
5.3 api config
+ 5.3.1api config
+ 5.3.2 api config factoryreset
+ 5.3.3 api config holidays
« 5.4 api switch
« 5.4.1 api switch caps
+ 5.4.2 api switch status
« 5.4.3 api switch ctrl
5.5apiio
« 5.5.1apiiocaps
« 5.5.2 apiio status
« 5.5.3 apiio ctrl
5.6 api phone
« 5.6.1 api phone status
+ 5.6.2 api phone calllog
+ 5.6.3 api phone config
5.7 api call
« 5.7.1 api call status
« 5.7.2 api call dial
« 5.7.3 api call answer

HTTP APl manual for 2N devices

72/ 199

« 5.7.4 api call hangup
5.8 api camera

« 5.8.1 api camera caps

« 5.8.2 api camera snapshot
5.9 api display

« 5.9.1 api display caps

« 5.9.2 api display image

+ 5.9.2.1 api display image examples

5.10 api log

« 5.10.1 api log caps

« 5.10.2 api log subscribe

+ 5.10.3 api log unsubscribe

+ 5.10.4 api log pull
5.11 api audio

« 5.11.1 api audio test
5.12 api email

« 5.12.1 api email send
5.13 api pcap

« 5.13.1 api pcap

» 5.13.2 api pcap restart

« 5.13.3 api pcap stop

« 5.13.4 api pcap live

 5.13.5 api pcap live stop

+ 5.13.6 api pcap live stats
5.14 api dir

« 5.14.1 apidir template

« 5.14.2 api dir create

« 5.14.3 api dir update

« 5.14.4 api dir delete

« 5.14.5apidir get

« 5.14.6 apidir query
5.15 api mobilekey

+ 5.15.1 api mobilekey config
5.16 api lpr

« 5.16.1 api lpr licenseplate

« 5.16.2 api lprimage
5.17 api accesspoint blocking

« 5.17.1 api accesspoint blocking ctrl

« 5.17.2 api accesspoint blocking status

« 5.17.3 api accesspoint grantaccess
5.18 api lift

+ 5.18.1 api lift grantaccess
5.19 api automation

« 5.19.1 api automation trigger

HTTP APl manual for 2N devices

2/ 199

HTTP APl manual for 2N devices

« 5.20 api cert
« 5.20.1 apicertca
« 5.20.2 api cert user

4/ 199

HTTP APl manual for 2N devices

1. Introduction

HTTP APl is an application interface designed for control of selected 2N devices functions via
the HTTP. It enables 2N devices to be integrated easily with third party products, such as home
automation, security and monitoring systems, etc.

HTTP API provides the following services:

+ System API - provides device configuration changes, status info and upgrade.

+ Switch API - provides switch status control and monitoring, e.g. door lock opening, etc.
+ 1/0 API - provides device logic input/output control and monitoring.

+ Audio API - provides audio playback control and microphone monitoring.

+ Camera API - provides camera image control and monitoring.

« Display API - provides display control and user information display.

+ E-mail API - provides sending of user e-mails.

+ Phone/Call API - provides incoming/outgoing call control and monitoring.

+ Logging API - provides reading of event records.

Set the transport protocol (HTTP or HTTPS) and way of authentication (None, Basic or Digest)
for each function. Create up to five user accounts (with own username and password) in
the HTTP API configuration for detailed access control of services and functions.

Use the configuration web interface on the Services /| HTTP API tab to configure your HTTP API.
Enable and configure all the available services and set the user account parameters.

Refer to http(s)://ip_device_address/apitest.html for a special tool integrated in the
device HTTP server for HTTP APl demonstration and testing.

5/ 199

a

HTTP APl manual for 2N devices

Caution

Warning

In order to ensure the full functionality and guaranteed performance, we strongly
recommend that the topicality of the product / device version in use be verified as early
as in the installation process. The customer hereby acknowledges that the product /
device can achieve the guaranteed performance and full functionality pursuant to the
manufacturer’s instructions only if the latest product / device version is used after
having been tested for full interoperability and not having been determined by the
manufacturer as incompatible with certain versions of other products, and only in
conformity with the manufacturer’s instructions, guidelines or recommendations and in
conjunction with suitable products and devices of other suppliers. The latest versions
are available at https://www.2n.com/cs_CZ/ or can be updated via the configuration
interface if the devices are adequately technically equipped. Should the customer use a
product / device version other than the latest one or a version determined by the
manufacturer as incompatible with certain versions of other products, or should the
customer use the product / device in contradiction to the manufacturer’s instructions,
guidelines or recommendations or in conjunction with unsuitable products / devices of
other suppliers, the customer is aware of and agrees with all functionality limitations of
such a product / device if any as well as with all consequences incurred as a result
thereof. Using a product / device version other than the latest one or a version
determined by the manufacturer as incompatible with certain versions of other
products, or using the product / device in contradiction to the manufacturer’s
instructions, guidelines or recommendations or in conjunction with unsuitable
products / devices of other suppliers, the customer agrees that the 2N
TELEKOMUNIKACE a.s. company shall not be held liable for any functionality limitation
of such a product or any damage, loss or injury related to this potential functionality
limitation.

1.1 HTTP API Release Notes

1.1 HTTP API Release Notes

Version Changes

2.44

2.42

« HTTP APl support for 2N LiftIP 2.0

« Addition of the api/system/timezone function.

« Addition of the api/system/timezone/caps function.

« Expansion of the api/system/time function of the PUT
method for time configuration.

« Addition of the api/cert/ca function.
« Addition of the api/cert/user function.

A/ 199

Version

2.40

2.39

2.38

2.37

2.36

2.35

2.34

2.32

HTTP APl manual for 2N devices

Changes

« The [api/lpr/licenseplate function has been extended to

include parameters lprID and lprDir.
New event DtmfSent.

Expansion of the MotionDetection event by the ID parameter,
which specifies the motion detection profile number on the
web interface.

Addition of the api/accesspoint/grantaccess function.
Addition of the ApiAccessRequested event generated
whenever the /api/accesspoint/grantaccess request is sent
with the result "success" : true.

Expansion of the api/switch/status function by the
holdTimeout parameter.

Expansion of the api/switch/ctrl function by the
timeout parameter.

Addition of the api/phone/calllog function for call log
download and deletion of selected / all records.

Addition of the api/system/time function for device time
retrieval.

Addition of the api/system/time/set function for device time
setting.

Addition of the users parameter to api/call/dial for making
calls to one or more users.

Addition of the api/lift/grantaccess function for enabling lift
floors based on authorization in another device.

Addition of the [api/pcap/live, api/pcap/live/stop and api/
pcap/stats functions for incoming / outgoing packet capture
control.

Addition of the /api/lpr/licenseplate function for access
control based on license plate recognition.

Addition of the api/lpr/image function for retrieving images
received from license plate recognition.

7/ 199

Version

231

2.30

2.29

2.28

2.27

2.26

2.25

2.24

2.23

2.22

HTTP APl manual for 2N devices

Changes

Addition of the /api/mobilekey/config for reading and writing
location IDs and encryption keys for Bluetooth
Authentication.

Removal of the apbBroken parameter from the AccessTaken
event.

Addition of the apbBroken parameter to the
UserAuthenticated event.

Addition of the new function for api system caps.
New event CapabilitiesChanged.

Unchanged.

New events: LiftStatusChanged, LiftConfigChanged,
LiftFloorEnabled.

Addition of the new functions for api holidays, api config
holidays, api dir template, api dir create, api dir update,
api dir delete, api dir get, api dir query.

New events: DtmfEntered, AccessTaken,
ApLockStateChanged, RexActivated.

Unchanged.

Change of user addition to the directory due to deletion of
positions.

Addition of the switchDisabled parametr to UserRejected
event.

New events: CardHeld, PairingStateChanged,
SwitchesBlocked, FingerEntered, MobKeyEntered,
DoorStateChanged, UserRejected, DisplayTouched.

f /199

Version

2.21

2.15

2.14

2.13

HTTP APl manual for 2N devices

Changes

The api/display/image (display, blob-image, blob-video,
duration, repeat parameters) function extended for 2N° IP
Verso

New events: UserAuthenticated, SilentAlarm,
AccessLimited

Addition of the timeSpan parameter to the /api/email/send
function

New events: TamperSwitchActivated,
UnauthorizedDoorOpen, DoorOpenTooLong and
LoginBlocked

Addition of the tzShift event that gives the difference
between the local time and Coordinated Universal Time (UTC)
The email/send function extended with a resolution setting
option for the images to be sent

Addition of the api/pcap, api/pcap/restart and api/pcap/
stop functions for network traffic download and control
Addition of the audio/test function for automatic audio test
launch

Addition of the email/send function

Addition of the response parameter to the [api/io/ctrl and /
api/switch/ctrl functions

The [call/hangup function extended with a reason parameter
specifying the call end reason

New events: MotionDetected, NoiseDetected and
SwitchStateChanged

The CallStateChanged event extended with a reason
parameter specifying the call end reason

First document version

q/ 199

HTTP APl manual for 2N devices

2. HTTP API Description

AlLHTTP APl commands are sent via HTTP/HTTPS to the intercom address with absolute path
completed with the [api prefix. Which protocol you choose depends on the current intercom
settings in the Services /| HTTP API section. The HTTP API functions are assigned to services
with defined security levels including the TLS connection request (i.e. HTTPS).

Example: Switch 1 activation http://10.0.23.193/api/switch/ctrl?switch=1&action=on

The absolute path includes the function group name (system, firmware, config, switch, etc.) and
the function name (caps, status, ctrl, etc.).
To be accepted by the intercom, a request has to include the method and absolute path
specification followed by the Host header.

Example:

GET /api/system/info HTTP/1.1
Host: 10.0.23.193

Intercom HTTP Server reply:
HTTP/1.1 200 OK

Server: HIP2.10.0.19.2
Content-Type: application/json
Content-Length: 253

{
"success" : true,
"result" : {
"variant" : "2N IP Vario",
"serialNumber" : "08-1860-0035",
"hwVersion" : "535v1",
"swVersion" : "2.10.0.19.2",
"buildType" : "beta",
"deviceName" : "2N IP Vario"
}
}

10/ 199

http://10.0.23.193/api/switch/ctrl?switch=1&action=on

HTTP APl manual for 2N devices

This chapter also includes:

+ 2.1 HTTP Methods
» 2.2 Request Parameters
+ 2.3 Replies to Requests

2.1 HTTP Methods
2N IP intercom applies the following four HTTP methods:

+ GET - requests intercom content download or general command execution

+ POST - requests intercom content download or general command execution
« PUT - requests intercom content upload

« DELETE - requests intercom content removal

The GET and POST methods are equivalent from the viewpoint of HTTP API but use different
parameter transfers (refer to the next subsection). The PUT and DELETE methods are used for
handling of such extensive objects as configuration, firmware, images and sound files.

2.2 Request Parameters

Practically all the HTTP API functions can have parameters. The parameters (switch, action,
width, height, blob-image, etc.) are included in the description of the selected HTTP
API function. The parameters can be transferred in three ways or their combinations:

1. inthe request path (uri query, GET, POST, PUT and DELETE methods);
2. inthe message content (application/x-www-form-urlencoded, POST and PUT methods);
3. inthe message content (multipart/form-data, POST and PUT methods) - RFC-1867.

If the transfer methods are combined, a parameter may occur more times in the request. In that
case, the last incidence is preferred.

There are two types of the HTTP APl parameters:

1. Simple value parameters (switch, action, etc.) can be transferred using any of the above
listed methods and do not contain the blob- prefix.

2. Large data parameters (configuration, firmware, images, etc.) always start with blob- and
can only be transferred via the last-named method (multipart/form-data).

2.3 Replies to Requests

Replies to requests are mostly in the JSON format. Binary data download (user sounds, images,
etc.) and intercom configuration requests are in XML. The Content-Type header specifies the
response format. Three basic reply types are defined for JSON.

Positive Reply without Parameters

This reply is sent in case a request has been executed successfully for functions that do not
return any parameters. This reply is always combined with the HTTP status code 200 OK.

11/ 199

HTTP APl manual for 2N devices

{

"success" : true,

}

Positive Reply with Parameters

This reply is sent in case a request has been executed successfully for functions that return
supplementary parameters. The resultitem includes other reply parameters related to the
function. This reply is always combined with the HTTP status code 200 OK.

{

"success" : true,
"result" : {

}
}

Negative Reply at Request Error

This reply is sent in case an error occurs during request processing. The reply specifies the error
code (code), text description (description) and error details if necessary (param). The reply can
be combined with the HTTP status code 200 OK or 401 Authorisation Required.

{

"success" : false,
"error" : {
"code" : 12,
"param" : "port",
"description" : "dinvalid parameter value"
}
}

The table below includes a list of available error codes.

Code Description
1 function is The requested function is unavailable in this model.
not
supported
2 invalid The absolute path specified in the HTTP request does not match any

request path of the HTTP API functions.

12/ 199

Code

10

11

12

13

14

Description

invalid
request
method

functionis
disabled

invalid
connection

type

invalid
authenticati
on method

authorisatio
n required

insufficient
user
privileges

missing
mandatory
parameter

invalid
parameter
value

parameter
data too big

unspecified
processing
error

HTTP APl manual for 2N devices

The HTTP method used is invalid for the selected function.

The function (service) is disabled. Enable the function on the
Services [HTTP API configuration interface page.

HTTPS connection is required.

The authentication method used is invalid for the selected service.
This error happens when the Digest method is only enabled for the
service but the client tries to authenticate via the Basic method.

User authorisation is required for the service access. This error is sent
together with the HTTP status code Authorisation Required.

The user to be authenticated has insufficient privileges for the
function.

The request lacks a mandatory parameter. Refer to param for the
parameter name.

A parameter value is invalid. Refer to param for the parameter name.

The parameter data exceed the acceptable limit. Refer to param for
the parameter name.

An unspecified error occurred during request processing.

12/ 199

Code

15

17

18

19

Description

no data
available

parameter
shouldn't be
present

request is
rejected

file version is
lower than
minimum

HTTP APl manual for 2N devices

The required data are not available on the server.

Parameter collision (it is impossible to write a specified parameter
combination).

The request cannot be processed now and was rejected by the device.

The submitted file version is lower than required.

14/ 199

3. HTTP API Services Security

Set the security level for each HTTP APl service via the 2N IP intercom configuration web
interface on the Services/ HTTP API tab: disable/enable a service and select the required
communication protocol and user authentication method.

HTTP APl Services ~

SERVICE EMABLE
System AP LV 4
APl Access Contro v 4

tih H: v‘
/O AP v
Audio AP v 4
Camera AP v
Display AP v
= ail APl v
Prnone/Call AP| v 4
Logging AP LV
Automation AP v 4

CONNECTION TYPE

Secure (TLS)

Secure (TLS)

Secure (TLS)

Secure (TLS)

Secure (TLS)

Secure (TLS)

Secure (TLS)

Secure (TLS)

Secure (TLS)

L4

Unsecure (TCP)

Secure (TLS)

W

HTTP APl manual for 2N devices

AUTHENTICATION

Digest

Digest

Digest

Digest

Digest

None

Digest

Digest

Digest

None

Digest

Set the required transport protocol for each service separately:
« HTTP - send requests via HTTP or HTTPS. Both the protocols are enabled and the security
level is defined by the protocol used.
« HTTPS - send requests via HTTPS. Any requests sent via the unsecured HTTP are rejected

by the intercom. HTTPS secures that no unauthorised person may read the contents of

sent/received messages.

Set authentication methods for the requests to be sent to the intercom for each service. If the
required authentication is not executed, the request will be rejected. Requests are
authenticated via a standard authentication protocol described in RFC-2617. The following

three authentication methods are available:

+ None - no authentication is required. In this case, this service is completely unsecure in

the LAN.

+ Basic - Basic authentication is required according to RFC-2617. In this case, the service is
protected with a password transmitted in an open format. Thus, we recommend you to
combine this option with HTTPS where possible.

15/ 199

HTTP APl manual for 2N devices

+ Digest - Digest authentication is required according to RFC-2617. This is the default and
most secure option of the three above listed methods.

We recommend you to use the HTTPS + Digest combination for all the services to achieve the
highest security and avoid misuse. If the other party does not support this combination, the
selected service can be granted a dispensation and assigned a lower security level.

16/ 199

HTTP APl manual for 2N devices

4. User Accounts
With2N IP intercomyou can administer up to five user accounts for access to
the HTTP APl services. The user account contains the user's name, password and HTTP
API access privileges.
v| Account Enabled
User Settings ~
Username VM3

Password

T
l'f)
LA
¢

User Privileg

DESCRIPTION MOMITORING CONTROL

1CULE and QUTDUTS

Use the table above to control the user account privileges to the HTTP API services.

17/ 199

HTTP APl manual for 2N devices

5. Overview of HTTP API Functions

The table below provides a list of all available HTTP API functions including:

+ the HTTP request absolute path;
+ the supported HTTP methods;

« the service in which the function is included;

+ the required user privileges (if authentication is used);
+ the use of the selected function is not subject to license in versions FW 2.35 and higher (i.e.

the function is avalaible without entering the license key)

Absolute path

/api/automation/trigger

/api/accesspoint/
blocking/ctrl

/api/accesspoint/
blocking/status

/api/accesspoint/
grantaccess

/api/audio/test
/api/call/answer
/api/call/dial
/api/call/hangup

/api/call/status

/api/camera/caps
/api/camera/snapshot
/api/config
/api/config/factoryreset
/api/config/holidays

/api/dir/create

Method

GET

GET/POST

GET/POST

GET/POST

GET/POST
GET/POST
GET/POST
GET/POST

GET/POST

GET/POST

GET/POST

GET/POST/PUT

GET/POST
GET/PUT

PUT

Service

Automation

Access Control

Access Control

Access Control

Audio

Phone/Call
Phone/Call
Phone/Call

Phone/Call

Camera
Camera
System
System
System

System

Privileges

Access to Automation
Access Control - Control
Access Control -
Monitoring

Access Control - Control

Audio - Control

Phone/Calls - Control
Phone/Calls - Control
Phone/Calls - Control

Phone/Calls -
Monitoring

Camera - Monitoring
Camera - Monitoring
System - Control
System - Control
System - Control

System - Control

18 / 199

Absolute path

/api/dir/delete
/api/dir/get
/api/dir/query
/api/dir/template
/api/dir/update
/api/display/caps
/api/display/image
/api/email/send
/api/firmware
/api/firmware/apply
/api/firmware/reject
/api/holidays

/api/io/caps

[api/io/ctrl

/api/io/status

/api/lift/grantaccess
/api/log/caps
/api/log/pull
/api/log/subscribe

/api/log/unsubscribe

Method

PUT
POST

POST
GET/POST
PUT
GET/POST
PUT/DELETE
GET/POST
PUT
GET/POST
GET/POST
GET/PUT

GET/POST

GET/POST

GET/POST

GET/POST
GET/POST
GET/POST
GET/POST

GET/POST

HTTP APl manual for 2N devices

Service

System
System
System
System
System
Display
Display
E-mail

System
System
System
System

I/O

I/O

I/O

Access Control
Logging
Logging
Logging

Logging

Privileges

System - Control
System - Control
System - Control
System - Control
System - Control
Display - Control
Display - Control
E-mail - Control

System - Control
System - Control
System - Control
System - Control

Inputs and outputs -
Monitoring

Inputs and outputs -
Monitoring

Inputs and outputs -
Monitoring

Access Control - Control

19/ 199

Absolute path

/api/lpr/image

/api/lpr/licenseplate

/api/mobilekey/config

/api/pcap
/api/pcap/live
/api/pcap/live/stats
/api/pcap/live/stop
/api/pcap/restart
/api/pcap/stop
/api/phone/calllog

/api/phone/calllog

/api/phone/status

/api/switch/caps
/api/switch/ctrl
/api/switch/status
/api/system/caps
/api/system/info
/api/system/restart

/api/system/status

Method

GET/POST

POST

GET/PUT

GET/POST
GET/POST
GET/POST
GET/POST
GET/POST
GET/POST
DELETE

GET/POST

GET/POST

GET/POST
GET/POST
GET/POST
GET

GET/POST
GET/POST

GET/POST

HTTP APl manual for 2N devices

Service

Access Control

Access Control

Access Control

System
System
System
System
System
System
Phone/Call

Phone/Call

Phone/Call

Switch
Switch
Switch
System
System
System

System

Privileges

Access Control -
Monitoring

Access Control - Control

Access Control -
Monitoring

System - Control
System - Control
System - Control
System - Control
System - Control
System - Control
Phone/Calls - Control

Phone/Calls -
Monitoring

Phone/Calls -
Monitoring

Switches - Monitoring
Switches - Control
Switches - Monitoring

System - Monitoring

System - Control

System - Control

20/ 199

Absolute path Method

/api/system/time GET/POST/PUT

/api/system/time/set GET/POST

/api/system/timezone GET/PUT

/api/system/timezone/ GET

caps
/api/system/ca GET/PUT/DELETE
/api/system/user GET/PUT/DELETE
This section also includes:

5.1 api system

« 5.1.1 api system info

« 5.1.2 api system status

« 5.1.3 api system restart

« 5.1.4 api system caps

« 5.1.5 api system time

+ 5.1.6 api system time set

« 5.1.7 api system timezone

« 5.1.8 api system timezone caps
5.2 api firmware

+ 5.2.1 api firmware

« 5.2.2 api firmware apply

+ 5.2.3 api firmware reject
5.3 api config

+ 5.3.1 api config

« 5.3.2 api config factoryreset

« 5.3.3 api config holidays
5.4 api switch

« 5.4.1 api switch caps

« 5.4.2 api switch status

+ 5.4.3 api switch ctrl
5.5apiio

« 5.5.1apiiocaps

« 5.5.2 apiio status

« 5.5.3 apiio ctrl

Service

System

System

System

System

System

System

HTTP APl manual for 2N devices

Privileges

System - Monitoring/
Control

System - Control

System - Monitoring/
Control

System - Monitoring

System - Control

System - Control

21/ 199

5.6 api phone

« 5.6.1 api phone status

+ 5.6.2 api phone calllog

+ 5.6.3 api phone config
5.7 api call

« 5.7.1 api call status

« 5.7.2 api call dial

« 5.7.3 api call answer

« 5.7.4 api call hangup
5.8 api camera

« 5.8.1 api camera caps

« 5.8.2 api camera snapshot
5.9 api display

« 5.9.1 api display caps

« 5.9.2 api display image

+ 5.9.2.1 api display image examples

5.10 api log

+ 5.10.1 api log caps

+ 5.10.2 api log subscribe

+ 5.10.3 api log unsubscribe

+ 5.10.4 api log pull
5.11 api audio

« 5.11.1 api audio test
5.12 api email

« 5.12.1 api email send
5.13 api pcap

« 5.13.1 api pcap

« 5.13.2 api pcap restart

« 5.13.3 api pcap stop

« 5.13.4 api pcap live

« 5.13.5 api pcap live stop

+ 5.13.6 api pcap live stats
5.14 api dir

« 5.14.1 apidir template
5.14.2 api dir create
5.14.3 api dir update
5.14.4 api dir delete
5.14.5 api dir get
5.14.6 api dir query
5.15 api mobilekey

+ 5.15.1 api mobilekey config
5.16 api lpr

« 5.16.1 api lpr licenseplate

« 5.16.2 api lprimage

HTTP APl manual for 2N devices

22/ 199

HTTP APl manual for 2N devices

5.17 api accesspoint blocking
« 5.17.1 api accesspoint blocking ctrl
« 5.17.2 api accesspoint blocking status
« 5.17.3 api accesspoint grantaccess
5.18 api lift
+ 5.18.1 api lift grantaccess
5.19 api automation
« 5.19.1 api automation trigger
5.20 api cert
« 5.20.1 apicertca
« 5.20.2 api cert user

5.1 api system
The following subsections detail the HTTP functions available for the api/system service.

+ 5.1.1 api system info

« 5.1.2 api system status

5.1.3 api system restart

5.1.4 api system caps

5.1.5 api system time

5.1.6 api system time set

5.1.7 api system timezone
5.1.8 api system timezone caps

5.1.1 api system info

The /api/system/info function provides basic information on the device: type, serial number,
firmware version, etc. The function is available in all device types regardless of the set access
rights.

The GET or POST method can be used for this function.

The function has no parameters.

723/ 199

HTTP APl manual for 2N devices

The reply is in the application/json format and includes the following information on the
device:

Parameter Description
devType Internal device identifier
variant Model name (version)
variantld Internal numerical identifier of the product
customerlid Internal numerical identifier
serialNumber Serial number
macAddr Network identifier of the device
hwVersion Hardware version
swVersion Firmware version
buildType Firmware build type (alpha, beta, or empty value for

official versions)
firmwarePackage FW package indication

deviceName Device name set in the configuration interface on the
Services [Web Server tab

A& Caution

+ Forversions 2.33.2 and higher, the "buildType" key value range is changed; the
value will include the "release" string for the official version. For versions 2.32.1
and lower, the "buildType" value range is empty for the official version.

24/ 199

HTTP APl manual for 2N devices

Example:

GET /api/system/info

{
"success" : true,
"result" : {
"devType" : "2-14-0-0",
"variant" : "2N IP Verso",
"variantId" : 14,
"customerId" : 0,
"serialNumber" : "00-0000-0005",
"macAddr" : "FC-1E-B3-00-00-05",
"hwVersion" : "570v1",
"swVersion" : "2.35.0.45.0",
"buildType" : "dev",
"firmwarePackage" : "verso",
"deviceName" : "2N IP Verso"
}
}

5.1.2 api system status
The /api/system/status function returns the current intercom status.

The function is part of the System service and the user must be assigned the System
Control privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.

The reply is in the application/json format and includes the current device status.

Parameter Description
systemTime Device real time in seconds since 00:00 1.1.1970 (unix
time)
upTime Device operation time since the last restart in seconds

25/ 199

HTTP APl manual for 2N devices

Example:

GET /api/system/status

{
"success" : true,
"result" : {
"systemTime" : 1418225091,
"upTime" : 190524
}
}

5.1.3 api system restart
The /api/system/restart restarts the intercom.

The function is part of the System service andthe user must be assigned the System
Control privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.
The reply is in the application/json format and includes no parameters.

Example:

GET /api/system/restart
{

"success" : true

}

5.1.4 api system caps

The /api/system/caps function is used for sending information to 2N° Access Commander on a
change in the list of available functions of the device.

The function is part of the System API service and the user has to be assigned the System
privilege for authentication if required.

The GET method can be used for this function.

The reply is in the application/json format and includes a set of device info.

26/ 199

HTTP APl manual for 2N devices

"success":true,

"result":{

"options":{
"codecG722":"active, licensed",
"codecG729":"active",
"codeclL1l6":"active",
"audioLoopTest":"active, licensed",
"noiseDetection":"active,licensed",
"userSounds'":"active, licensed",
"adaptiveVolume":"active",
"antiHowling":"active",
"keyBeep":"active",
"camera":"active",
"video":"active",
"cameraPtz":"active, licensed",
"motionDetection":"active, licensed",
"encH264":"active",
"encH263":"active",
"encMpeg4":"active",
"encJpeg":"active",
"decH264":"active",
"phone":"active",
"phoneVideo":"active",
"phoneVideoOut":"active",
"sips":"active, licensed",
"srtp":"active, licensed",
"callAnswerMode":"active",
"doorOpenCallback":"active",
"rtspServer":"active, licensed",
"rtspClient":"active, licensed",
"audioMulticast":"active",
"smtpClient":"active, licensed",
"ftpClient":"active,licensed",
"onvif":"active, licensed",
"snmp":"active, licensed",
"troe9":"active, licensed",
"knocker":"active",
"my2n":"active",
"informacast":"active, licensed",
"autoProv":"active, licensed",
"httpApi":"active,licensed",
"eap":"active,licensed",
"eapMd5":"active, licensed",
"eapTls":"active, licensed",
"vpn'":"active",
"userVpn":"active",
"rioManager'":"active,licensed",
"siteChannel":"active",
"localCalls":"active",
"switches":"active",
"advancedSwitches":"active, licensed",
"switchUserCodes":"active",

27/ 199

HTTP APl manual for 2N devices

"securedInput":"active",
"rexInput":"active",
"tamperInput":"active",
"doorSensor":"active",
"keypad":"active",
"buttons":"active",
"liftControl":"active, licensed",
"limitFailedAccess":"active,licensed",
"silentAlarm":"active, licensed",
"scrambleKeypad":"active,licensed",
"tamperBlockSwitch":"active,licensed",
"antiPassback":"active,licensed",
"dir":"active",
"dirDeputy":"active",
"dirPhoto":"active",
"automation":"active, licensed",
"licDownload":"active",
"profiles":"active",
"licensing":"active",
"accessControl":"active",
"doorControl":"active",
"nfc":"active, licensed",
"vbus":"active",
"vbusExtenders":"active",
"cardReader":"active",
"fpReader":"active",
"bleReader":"active",
"wiegand":"active",
"powerManager":"active",
"audioInput":"active",
"lightSensor":"active",
"irLed":"active",
"backlight":"active",
"backlightDayNight":"active",
"display":"active"

5.1.5 api system time
The [api/system/time function is used for device time retrieval or setting.

You can use the GET method for data retrieval and the PUT method for configuration upload.

2R/ 199

HTTP APl manual for 2N devices

GET method

The function is part of the System service and the user has to be assigned the System
(Monitoring) privilege for authentication if required.

No parameters are defined for the GET method.

The response is in the application/json format and includes the device real time in seconds
from 00:00 1.1.1970 (unix time).

Example:

GET /api/system/time

{
"success" : true,
"result" : {
"utcTime" : 1639472172,
"source" : "My2N",
"automatic" : true,
}
}
PUT method
& Caution

+ We recommend that this endpoint is used for time setting only in case the Use
time from Internet parameter is disabled. If it is enabled, the time value is
overwritten with a value from the NTP server or the My2N time service.

The function is part of the System service and the user has to be assigned the System
(Control) privilege for authentication if required.

Request parameters for PUT:

Parameter Description

automatic automatic time retrieval from NTP server

If true is completed, no more parameters are entered.
utcTime number = unix time, min 0, max 2147483647

server NTP Server Address (IPv4 address or domain)

The reply is in the application/json format.

29/ 199

HTTP APl manual for 2N devices

PUT /api/system/time?automatic=0&server=pool.ntp.org&utcTime=1700829813{ "success" :
true, }

5.1.6 api system time set

@ Note

+ This function was replaced with the api system time PUT method in firmware
version 2.44.

The /api/system/time/set function is used for device time setting.
The GET or POST method can be used for the function.

The function is part of the System service and the user has to be assigned the System (Control)
privilege for authentication if required.

Request parameters:

Parameter Description

time number = unix time, min 0, max 2147483647

The response is in the application/json format.

20/ 199

HTTP APl manual for 2N devices

Example:

{

"success" : true

}

& Caution

+ We recommend that this endpoint is used for time setting only in case the Use
time from Internet parameter is disabled. If it is enabled, the time value is
overwritten with a value from the NTP server or the My2N time service.

5.1.7 api system timezone

The [api/system/timezone function is used for obtaining information on the device time zone
or for time zone setting.

You can use the GET method for data retrieval and the PUT method for configuration upload.

GET method

The function is part of the System service and the user has to be assigned the System
(Monitoring) privilege for authentication if required.

No parameters are defined for the GET method.

The response is in the application/json format and includes information on whether the zone
has been set automatically and what time zone has been set. In case the time zone has been set
manually, the custom parameter shows the zone creating rule.

Example:

GET /api/system/timezone

{
"success": true,
"result": {
"automatic": true,
"zone": "America/Los Angeles"
}
}
nebo
{
"success": true,
"result": {
"automatic": false
"zone": '"custom",

"custom": "UTC-08:00"

21/ 199

HTTP APl manual for 2N devices

PUT method

The function is part of the System service and the user has to be assigned the System
(Control) privilege for authentication if required.

Request parameters for PUT:

Parametr Popis

automatic Oorl

If true (1) is completed, no more parameters are entered.

zone Define the zone: enter either the zone name or "custom" for manual setting.

Refer to the zone name list on the 5.1.8 api system timezone caps endpoint.

custom Define the zone by writing UTC-08:00, UTC+03:00, etc.

Available for zone="custom" only.

Example:

PUT /api/system/timezone?automatic=0&zone=custom&custom=UTC-08:00

{

"success" : true

}

5.1.8 api system timezone caps

The api/system/timezone/caps returns a list of available time zones.
The GET or POST method can be used for this function.

The function has no parameters.

The response is in the application/json.

GET /api/system/timezone/caps
{

"success": true,

"result": {

"timezones": [
"Africa/Abidjan",
"Africa/Accra",
"Africa/Bissau",

27/ 199

"Africa/Monrovia",
"Africa/Sao_Tome",
"America/Danmarkshavn",
"Antarctica/Troll",
"Atlantic/Canary",
"Atlantic/Faroe",
"Atlantic/Madeira",
"Atlantic/Reykjavik",
"Etc/GMT",

"Etc/UCT",

"Etc/UTC",
"Europe/Lisbon",
"Europe/London",

5.2 api firmware

HTTP APl manual for 2N devices

The following subsections detail the HTTP functions available for the api/firmware service.

« 5.2.1 apifirmware

« 5.2.2 apifirmware apply
+ 5.2.3 api firmware reject

5.2.1 api firmware

The api/firmware function uploads the firmware file for upgrade/downgrade.

Methods
« PUT

Services and Privileges

+ Services: System API
+ Privileges: System Control

Request PUT

The request contains a file in multipart/form-data.

22/ 199

Table 1. Request Parameters

Paramet
er

blob- Yes

fw

Mandatory

Expected Values

Valid firmware

binary file

Example of a PUT Request

http://192.168.1.1/api/firmware

Response to PUT

HTTP APl manual for 2N devices

Default Value Description

- Firmware file

The response is in the application/json format. The response contains
the success and result keys. The result value contains various keys described in the table

below.

Table 2. Response JSON Keys

Key

fileld

version

downgrade

note

Typical Returned
Values

Random
identifier (8 HEX
characters)

String with
version
identification
major.minor.pat
ch.build.id

true or false

String with
escaped
characters

Description

Contains a random identifier of the uploaded
firmware file. The identifier must be used to confirm
the uploaded firmware using api/firmware/apply or
to reject the uploaded firmware using api/firmware/
reject.

Contains version identification of the uploaded
firmware file.

This flagis true if the uploaded firmware has a lower
version than the current firmware in the device.

Contains an upgrade message for the uploaded
firmware (e.g. warning about major changes).

24/ 199

http://major.minor.patch.build.id/

HTTP APl manual for 2N devices

Example of a Response to PUT

{ "success" : true, "result" : { "fileId" : "7d6adfle", "version" : "2.32.4.41.2",
"downgrade" : false, "note" : "EN:\r\nVER=2.20.0\r\nSome changes associated with the
downgrade to a lower version result in a loss of original settings in a certain part
of configuration.\r\n\r\nx All the cards installed in the *xxDirectory \/ Access
cards*xx menu are moved to the *xDirectory \/ Users** menu as new users upon firmware
upgrade. Each user 1is automatically named as !Visitor #n, where n gives the user
number in the list. This change s drreversible upon downgrade.\r\n* Service cards
are now available in the xxHardware \/ Card readerxx menu.\r\nx All the user

access \UG43F\uO440\UO43E\uO444\u0438\u043B\u0435\u043C
\UO43F\UO43E\u043B\ud44C\u0437\UO43E\u0432\u0430\u0442\u0435\u043B\ud44F.

\r\n\r\n" } }

The following specific error codes may be returned:

« Error code 12
« param ="blob-fw"
« description ="invalid parameter value"
 The uploaded firmware file does not match the requirements (invalid file,
firmware for a different device...)
« Error code 19
« description = "file version is lower than the required minimum"
+ The uploaded firmware file has a lower version than the minimum version
allowed for the device.

A Note

The device does not reply to requests to upload another firmware version when the
previous firmware file is present. Use api/firmware/reject to reject the previous
firmware first and then upload another firmware version. The uploaded firmware file is
automatically rejected in 5 minutes if not applied.

5.2.2 api firmware apply

The api/firmware/apply function confirms the uploaded firmware file and performs device
upgrade/downgrade.

Methods

« GET
« POST

25/ 199

HTTP APl manual for 2N devices

Services and Privileges

+ Services: System API
+ Privileges: System Control

Request PUT

The request contains a file in URL.

Table 1. Request Parameters

Paramet Mandatory Expected Values Default Value Description

er

fileld Yes Firmware file - This parameter has to
identifier correspond to the

identifier of the currently
uploaded firmware file.

Example of a GET or POST Request

http://192.168.1.1/api/firmware/apply?fileld=7d6adf16

Response to GET or POST

The response is in the application/json format. The response contains success. If success
is true, the firmware is applied and the device is upgraded/downgraded.

Example of a Response to GET or POST

{ "success" : true }

The following specific error codes may be returned:

e Error code 12
« parameter = "fileld"
« description ="invalid parameter"

2%/ 199

HTTP APl manual for 2N devices

+ Thefile identifier is invalid (e.g. contains non-HEX characters).

e Error code 14

« description = "new firmware not found"

« There is no firmware file uploaded with such afileld.

5.2.3 api firmware reject

The api/firmware/reject function rejects the uploaded firmware file.

Methods
« GET
« POST

Services and Privileges
+ Services: System API
+ Privileges: System Control

Request PUT

The request contains a file in URL.

Table 1. Request Parameters

Paramet Mandatory Expected Values
er
fileld Yes Firmware file

identifier

Example of a GET or POST Request

Default Value

Description

This parameter has to
correspond to the
identifier of the currently
uploaded firmware file.

http://192.168.1.1/api/firmware/reject?fileld=7d6adf16

Response to GET or POST

The response is in the application/json format. The response contains success. If success
is true, the firmware is rejected and it is possible to upload a new firmware file using api/

firmware.

27/ 199

HTTP APl manual for 2N devices

Example of a Response to GET or POST

{ "success" : true }

The following specific error codes may be returned:
* Error code 12

« parameter = "fileld"
« description ="invalid parameter"
« Thefile identifier is invalid (e.g. contains non-HEX characters).

e Error code 14

« description = "new firmware not found"
« Thereis no firmware file uploaded with such fileld.

A Note

« The device does not reply to the api/firmware requests to upload another
firmware version when the previous firmware file is present. Use api/firmware/
reject to reject the previous firmware first and then upload another firmware
version. The uploaded firmware file is automatically rejected in 5 minutes if not
applied.

5.3 api config

The following subsections detail the HTTP functions available for the api/config service.

+ 5.3.1 api config
+ 5.3.2 api config factoryreset
+ 5.3.3 api config holidays

5.3.1 api config
The /api/config function helps you upload or download device configuration.

The function is part of the System service andthe user must be assigned the System
Control privilege for authentication if required. The function is available with the Enhanced
Integration licence key only.

Use the GET or POST method for configuration download and PUT method for configuration
upload.

2%/ 199

HTTP APl manual for 2N devices

Request parameters for PUT:

Parameter Description

blob-cfg Mandatory parameter including device configuration (XML)

No parameters are defined for the GET/POST methods.

For configuration download, the reply is in the application/xml format and contains a complete
device configuration file.

The [api/config function using the PUT method uploads configuration with a delay of approx. 15
s; do not reset or switch off the intercom during this interval.

Example:

GET /api/config
<?xml version="1.0" encoding="UTF-8"?>
<l--
Product name: 2N IP Vario
Serial number: 08-1860-0035
Software version: 2.10.0.19.2
Hardware version: 535vl
Bootloader version: 2.10.0.19.1
Display: No
Card reader: No
-=>
<DeviceDatabase Version="4">
<Network>
<DhcpEnabled>1</DhcpEnabled>

For configuration upload, the reply is in the application/json format and includes no other
parameters.

Example:

PUT /api/config
{

"success" : true

}

29/ 199

HTTP APl manual for 2N devices

A& Caution

+ User positions are cancelled in the directory in version 2.24. Thus, download the
current configuration, make the required changes and then upload the
configuration to update the directory.

+ Should you fail to keep the instructions above, data may get lost.

5.3.2 api config factoryreset

The [api/config/factoryreset function resets the factory default values for all the intercom
parameters. This function is equivalent to the function of the same name in the System/
Maintenance / Default setting section of the configuration web interface.

The function is part of the System service andthe user must be assigned the System
Control privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.
The reply is in the application/json format and includes no parameters.

The /api/config/factoryreset function resets the intercom factory values with a delay of approx.
15 s; do not reset or switch off the intercom during this interval.

Example:

GET /api/config/factoryreset
{

"success" : true

}

5.3.3 api config holidays
The [api/config/holidays function can be used to get/set the bank holidays list.

The function is part of the System service and the user must be assigned the System
Control privilege for authentication if required.

The GET or PUT method can be used for this function.
No parameters are defined for the GET method.

Request parameters for PUT method:

Parameter Description

blob-json Mandatory parameter containing definition of bank
holidays (JSON)

40/ 199

HTTP APl manual for 2N devices

The reply of the GET method is in the application/json format and contains an array of bank
holidays. The dates are formatted as DD/MM[/YYYY], where the year is specified only if the
holiday is valid for the particular year only.

GET /api/config/holidays

{ "success" : true, "result" : { "dates": ["O1\/01", "24\/12", "01\/04\/2018"] } }

The PUT method JSON format is the same format as a result of the GET method.

{ "dates": ["O01\/01", "24\/12", "01\/04\/2018"] }

The reply of the PUT method is in the application/json format and contains no other
parameters.

PUT /api/config/holidays

{ "success'": true

}

5.4 api switch
The following subsections detail the HTTP functions available for the api/switch service.

« 5.4.1 api switch caps
« 5.4.2 api switch status
» 5.4.3 api switch ctrl

5.4.1 api switch caps

The /api/switch/caps function returns the current switch settings and control options. Define
the switch in the optional switch parameter. If the switch parameter is not included, settings of
all the switches are returned.

The function is part of the Switchservice andthe user must be assigned the Switch
Monitoring privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

41/ 199

HTTP APl manual for 2N devices

Parameter Description

switch Optional switch identifier (typically, 1 to 4)

The reply is in the application/json format and includes a switch list (switches) including
current settings. If the switch parameter is used, the switches field includes just one item.

Parameter Description

switch Switch Id (1 to 4)

enabled Switch control enabled in the configuration web
interface

mode Selected switch mode (monostable, bistable)

switchOnDuration Switch activation time in seconds (for monostable
mode only)

type Switch type (normal, security)

47 / 199

Example:
GET /api/switch/caps
{
"success" : true,
"result" : {
"switches" : [
{
"switch" : 1,
"enabled" : true,
"mode" : "monostable",
"switchOnDuration" : 5,
"type" : "normal"
3,
{
"switch" : 2,
"enabled" : true,
"mode" : "monostable",
"switchOnDuration" : 5,
"type" : "normal"
3,
{
"switch" : 3,
"enabled" : false
3,
{
"switch" : 4,
"enabled" : false
}
]
}
}

5.4.2 api switch status

HTTP APl manual for 2N devices

The api/switch/status function returns the current switch statuses.

Service and Privileges Groups

« Service group is Switch.

« Privileges group is Switch Control.

Methods

o GET
« POST

42/ 199

HTTP APl manual for 2N devices

Request

The request contains parameters in the URL (or in the application/x-www-form-
urlencoded format when POST is used).

Table 1. Request Parameters

Param Manda Expected Def Description
eter tory Values ault
Name Val
ue
switc No Integer - Defines which switch status will be returned. api/
h defining a switch/caps can be used for obtaining the number of
switch switches of a particular device. The status of switches is
(typically 1 returned if this parameter is omitted.
to 4)
holdT No - Defines the remaining switch hold time. The parameter
imeo is not displayed in the response if the timeout is not set
ut or there is no switch hold timeout.

Example of a Request

URL: https://192.168.1.1/api/switch/status?switch=1

Response

The success response is in the application/json format. It contains two JSON keys success and r
esult, which contains the key swi tches (status information on individual switches are in an
Array of one to four elements).

Table 2. Response switches JSON Keys

Key Typical Description

Returned

Values
switc Integer Defines to which switch the status is related.
h (typically 1

to 4)

44/ 199

HTTP APl manual for 2N devices

Key Typical Description

Returned

Values
activ trueor Defines the current state of the switch (true - the switch is activated,
e false false - the switch is deactivated).
locke trueor Defines whether the switch is locked or not (true - the switch is locked
d false in deactivated position and cannot be operated, false - the switch is

unlocked and can be operated normally). Locking has the priority over
holding the switch - i.e. when the switch is simultaneously locked and
held, it is deactivated and cannot be operated.

held trueor Defines whether the switch is held or not (true - the switch is held in
false activated position and cannot be operated, false - the switch is
released and can be operated normally). Locking has the priority over
holding the switch - i.e. when the switch is simultaneously locked and
held, it is deactivated and cannot be operated.

Example of a Response

{ "success": true, "result": { "switches": [{ "switch": 1, "active": true, "locked":
false, "held": true }, { "switch": 2, "active": true, "locked": false, "held": false
}, { "switch": 3, "active": false, "locked": true, "held": true }, { "switch": 4,
"active": false, "locked": true, "held": false }] } }

There may occur various errors (e.g. missing mandatory parameter). Errors are returned in .json
with a response code 200.

5.4.3 api switch ctrl

The [api/switch/ctrlis used for control of switches.

Service and Privileges Groups

« Service group is Switch.
» Privileges group is Switch Access Control.

45/ 199

HTTP APl manual for 2N devices

Methods

« GET
« POST

Request

The request contains parameters in the URL (or in the application/x-www-form-
urlencoded format when POST is used).

Table 1. Request Parameters

Para Mand Expected Values Def Description

mete atory aul

r t

Nam Val

e ue

swit Yes Integer defining - Defines which switch will be controlled. api/switch/

ch a switch caps can be used for obtaining the number of
(typically 1 to 4) switches of a particular device.

acti Yes String defining - Defines which command will be applied to the

on the command switch. The available commands are:

 on - activate switch

« off - deactivate switch

« trigger - activate monostable switch,
toggle the state of bistable switch

« lock - lock switch (locked switch is
deactivated and cannot be operated)

« unlock - unlock switch (allow normal
operation)

« hold - hold switch activated (held switch is
activated and cannot be operated), if the
switch is locked and held together it is
deactivated

+ release - release the switch from being held
(allow normal operation)

46/ 199

Para
mete

Nam

resp
onse

time
out

Mand
atory

No

No

(use

when
acti
on=h
old)

Expected Values

String defining a
text thatis to be
returned instead
of standard
JSON response

Range of 1-86
400 seconds

Example of a Request

URL:

Def
aul

Val
ue

HTTP APl manual for 2N devices

Description

The device will return the text specified in this
parameter instead of a standard JSON response.

Defines the timeout in seconds after which the
switch releases again automatically after receiving
the hold command.

https://192.168.1.1/api/switch/ctrl?switch=4&action=trigger&response=TEST

Response

The success response is in the application/json format (unless a custom text response is
defined in the response parameter).

Table 2. Response JSON Keys

Ke
y

su
(o o
es

Typical
Returne
d Values

true
or
false

Description

When a command was performed successfully, the success value is true, and
itis false when the requested switch state could not be reached (e.g. the
switch is locked and the requested state is activated switch).

47/ 199

HTTP APl manual for 2N devices

Example of a Response

{ "success": true }

Additional error information is contained in the response when the success is false. Error code
14 "action failed" is returned when the requested result could not be achieved (e.g. when the
switch is locked and action=on is requested). Acommand to change the operation type (i.e.
held, locked) will always succeed since the operation can be changed all the time except when
the switch is disabled (a device will return error 14 to all commands when the switch is
disabled).

5.5apiio
The following subsections detail the HTTP functions available for the apifio service.

« 5.5.1apiiocaps
« 5.5.2 apiio status
« 5.5.3 apiio ctrl

5.5.1 apiio caps

The /api/io/caps function returns a list of available hardware inputs and outputs (ports) of the
device. Define theinput/outputin the optional port parameter. If the port parameter is not
included, settings of all the inputs and outputs are returned.

The function is part of thel/Oservice andthe wuser must be assigned thel/
O Monitoring privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

Parameter Description

Port Optional input/output identifier

The reply is in the application/json format and includes a port list (ports) including current
settings. If the port parameter is used, the ports field includes just one item.

Parameter Description
port Input/output identifier
type Type (input - for digital inputs, output - for digital
outputs)

4R/ 199

HTTP APl manual for 2N devices

Example:

GET /api/io/caps

{
"success" : true,
"result" : {
"ports" : [
{
"port" : "relayl",
"type" : "output"
3,
{
"port" : "relay2",
"type" : "output"
3
]
3
3

5.5.2 apiio status

The /apifio/status function returns the current statuses of logic inputs and outputs (ports) of
the device. Define the input/output in the optional port parameter. If the port parameter is not
included, statuses of all the inputs and outputs are returned.

The function is part of thel/Oservice andthe wuser must be assigned thel/
O Monitoring privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

Parameter Description

port Optional input/output identifier. Use also [api/io/caps to
get identifiers of the available inputs and outputs.

The reply is in the application/json format and includes a port list (ports) including current
settings (state). If the port parameter is used, the ports field includes just one item.

49/ 199

HTTP APl manual for 2N devices

Example:

GET /api/io/status

{
"success" : true,
"result" : {
"ports" : [
{
"port" : "relayl",
"state" : 0
3,
{
"port" : "relay2",
"state" : 0
3
]
3
3

5.5.3 apiio ctrl

The [apifio/ctrl function controls the statuses of the device logic outputs. The function has two
mandatory parameters: port, which determines the output to be controlled, and action,
defining the action to be executed over the output (activation, deactivation).

The function is part of the 1/0 service and the user must be assigned the 1/0 Control privilege for
authentication if required.

The GET or POST method can be used for this function.

Request parameters:

Parameter Description

port Mandatory 1/0 identifier. Use also [api/io/caps to get the
identifiers of the available inputs and outputs.

action Mandatory action defining parameter (on - activate output,
log. 1, off — deactivate output, log. 0)

response Optional parameter modifying the intercom response to
include the text defined here instead of the JSON message.

The reply is in the application/json format and includes no parameters.

50/ 199

HTTP APl manual for 2N devices
Example:

GET /api/io/ctr1?port=relayl&action=on
{

"success" : true

}

If the response parameter is used, the reply does not include the json messages; the server
returns a text/plain reply with the specified text (which can be empty).

Example:

GET /api/io/ctrl?port=relayl&action=on&response=text
text

GET /api/io/ctr1?port=relayl&action=on&response=

5.6 api phone
The following subsections detail the HTTP functions available for the api/phone service.

+ 5.6.1 api phone status
+ 5.6.2 api phone calllog
+ 5.6.3 api phone config

5.6.1 api phone status
The [api/phone/status functions helps you get the current statuses of the device SIP accounts.

The function is part of the Phone/Call service and the user must be assigned the Phone/Call
Monitoring privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

Parameter Description

account Optional SIP account identifier (1 or 2). If the parameter is not
included, the function returns statuses of all the SIP accounts.

The reply is in the application/json format and includes a list of device SIP accounts (accounts)

including current statuses. If the account parameter is used, the accounts field includes just
oneitem.

51/ 199

Parameter
account
enabled
sipNumber
registrationEnabled

registered

Example:

HTTP APl manual for 2N devices

Description
Unique SIP account identifier (1 or 2)
SIP account enabled
SIP account telephone number
SIP account registration enabled

Account registration with SIP Registrar

GET /api/phone/status GET /api/phone/status

{
"success" : true,
"result" : {
"accounts" : [
{
"account" : 1,
"enabled" : true,
"sipNumber" : "5207",
"registrationEnabled" :
"registered" : true,
"registerTime" : 1663585547
3,
{
"account" : 2,
"enabled" : false,
"sipNumber" : "',
"registrationEnabled" :
"registered" : false
}
]
}
}

5.6.2 api phone calllog

The [api/phone/calllog helps you download or delete all or selected call records.

The function is part of the Phone/Call API function and the user has to be assigned the Phone/
Call Access Monitoring privilege for authentication if required.

The call log provides the following information:

52 /199

HTTP APl manual for 2N devices

+ Calltype
+ Incoming call (connected or declined)
+ Missed call (unanswered incoming call)
+ Completed elsewhere (incoming call answered via another device)
+ Outgoing call (regardless of the result)
« Doorbell button
Contact type (icon contact setting)
+ Called / calling user ID
Call date and time

GET or POST Method
The function has no parameters.

The response is in the application/json format and includes the current device states:

Parameter Description
id Unique record identification.

callType Call type specification.

« incoming

« outgoing

» missed

» voicemail

« completedElsewhere
+ doorbell button

devType Internal device identifier.

name Phone book user name specification.
date Call record date.

duration Call duration in seconds.

The records are arranged from the newest to the oldest one according to the absolute call
record time.

A Caution

+ Thefield is empty if no logs are available.

52/ 199

HTTP APl manual for 2N devices

Example:
{
"success" : true,
"result" : {
"callLog" : [
{
"id" : ID,
"callType" : "dincoming",
"devType" : "2-14-0-0",
"name" : "Franta Vomacka",
"date" : "2027-11-06T12:23:527",
"duration": 1514
3,
{
"id" : ID,
"callType" : "dincoming",
"devType" : "4-13-1-2",
"name" : "Pepa VonaSek",
"date" : "2027-12-06T12:23:527",
"duration": 15
3,
]
}
}
Door bell
{
"success" : true,
"result" : {
"callLog" : [
{
"id" : ID,
"callType" : "doorbell",
"date" : "2027-11-06T12:23:52Z"
3,
]
}
}

DELETE Method

The function is part of the Phone/Call API function and the user has to be assigned the Phone/
Call Access Control privilege for authentication if required.

54/ 199

HTTP APl manual for 2N devices

Request parameters:

Parameter Description
id Unique identifier of the record to be deleted.
Example:
{
"success" : false,
"error" : {
"code" : 12,
llparamll : ll-id"’
"description" : "record not found"
}
}

5.6.3 api phone config
The [api/phone/config function is used for monitoring and checking the SIP account settings.

The GET method can be used for downloading and the PUT method for uploading the
configuration in this function.

The function is part of the Phone/Call service and, if authentication is required, the user has to
be assigned the Phone/Calls - Monitoring privilege for the GET method and Phone/Calls -
Management for the PUT method.

GET Method

Request parameters:

Parameter Description

account Optional parameter defining the SIP account identifier (1 or 2). If
the parameter is not included, the function returns the states of
all the SIP accounts.

The response is in the application/json format for the GET method and provides a list of the

device SIP accounts (accounts) including their current states. In case the account is specified
using the account parameter, the response only provides information on the given account.

K5/ 199

A& Caution

HTTP APl manual for 2N devices

« For security reasons, the device does not return the password if the GET method
is used.

Example:

GET /api/phone/config

true,

"accounts": [

{
"success":
"result":
{
1,
{
}
]
}
PUT Method

"account": 1,
"enabled": false,

"displayName'": "',
"sipNumber'": "'",
"domain": "",
"domainPort": "",
"authId": "",
"proxyAddress": "",
"proxyPort": "",
"registrationEnabled": false,
"registrarAddress": "",
"registrarPort": "',
"answerMode'": "1"

"account": 2,
"enabled": false,

"displayName'": "',
"sipNumber'": "'",
"domain": "",
"domainPort": "",
"authId": "",
"proxyAddress": "",
"proxyPort": "",
"registrationEnabled": false,
"registrarAddress": "",
"registrarPort": "",
"answerMode'": "1"

Request parameters:

56/ 199

HTTP APl manual for 2N devices

Parameter Description

blob-json Mandatory parameter containing the SIP account
configurations (in the JSON format).

The blob-json parameter is mandatory for the PUT method and can include all the accounts
parameters from the file obtained using the GET method. In addition to the mandatory
account parameter, one more parameter must be included at least. The other parameters are
optional. It is possible to specify the password parameter and enter the password in the open
form for each account in the JSON file uploaded. This parameter is not part of the response to
the GET method for security reasons. The response is in the application/json format. Should an
error occur during verification, the whole process fails and none of the parameters will be used.

Example:

PUT /api/phone/config
{

"success": true,

}

The database parameters correspond to the JSON file parameters as follows:

Database parameter JSON parameter Additional info
Phone.Sip account Numbering starts from 1, not from 0.
Phone.Sip.Enabled enabled

Phone.Sip.User.DisplayNa displayName

me

Phone.Sip.User.ld sipNumber

Phone.Sip.User.Authld authid If the parameter is empty, the
Phone.Sip.User.ld parameter is used
instead.

Phone.Sip.User.PasswordS password In open form - can be uploaded into the

tring device only using the PUT method,
cannot be obtained using the GET
method.

57/ 199

Database parameter
Phone.Sip.Client.Domain
Phone.Sip.Client.Port
Phone.Sip.Proxy.Address
Phone.Sip.Proxy.Port

Phone.Sip.Registrar.Enabl
ed

Phone.Sip.Registrar.Addre
ss

Phone.Sip.Registrar.Port

Phone.Sip.Misc.AnswerMo
de

5.7 api call

The following subsections detail the HTTP functions available for the api/call service.

« 5.7.1 api call status
« 5.7.2 api call dial

« 5.7.3 api call answer
« 5.7.4 api call hangup

5.7.1 api call status

JSON parameter
domain
domainPort
proxyAddress
proxyPort

registrationEnabl
ed

registrarAddress

registrarPort

answerMode

HTTP APl manual for 2N devices

Additional info

The /api/call/status function helps you get the current states of active telephone calls. The

function returns a list of active calls including parameters.

The function is part of the Phone/Call service and the user must be assigned the Phone/Call
Monitoring privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

KR / 199

HTTP APl manual for 2N devices

Parameter Description

session Optional call identifier. If the parameter is not included, the
function returns statuses of all the active calls.

The reply is in the application/json format and includes a list of active calls (sessions) including
their current states. If the session parameter is used, the sessions field includes just one item. If
there is no active call, the sessions field is empty.

Parameter Description
session Call identifier
direction Call direction (incoming, outgoing)
state Call state (connecting, ringing, connected)

Example:

GET /api/call/status

{
"success" : true,
"result" : {
"sessions" : [
{
"session" : 1,
"direction" : "outgoing",
"state" : "ringing"
3
]
3

5.7.2 api call dial

The [api/call/dial function helps you initiate a new outgoing call to a selected phone number or
sip uri using the number parameter or one or more users using the users parameter. The
command may include just one of the mentioned parameters, otherwise it will be returned with
an error reponse.

The function is part of the Phone/Call service and the user must be assigned the Phone/Call
Control privilege for authentication if required.

The /api/call/dial function allows you to initiate a new outgoing call to a selected phone
number or sip uri using the number parameter, or to one or more users using the users

50/ 199

HTTP APl manual for 2N devices

parameter. The command may contain just one of the listed parameters, otherwise an error
message is returned.

The GET or POST method can be used for this function.

AN/ 199

HTTP APl manual for 2N devices

Request parameters:

Parameter Description

number Mandatory parameter specifying the destination phone
number or sip uri

users List of comma-separated user uuids (unique IDs).

The reply is in the application/json format and includes information on the outgoing call
created.

Parameter Description

session Callidentifier, used, for example, for call monitoring with /
api/call/status or call termination with /api/call/hangup

Example:

GET /api/call/dial?number=sip:1234@10.0.23.194

{
"success" : true,
"result" : {
"session" : 2
}
}

5.7.3 api call answer
The /api/call/answer function helps you answer an active incoming call (in the ringing state).

The function is part of the Phone/Call service and the user must be assigned the Phone/Call
Control privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

Parameter Description

session Active incoming call identifier

The reply is in the application/json format and includes no parameters.

A1/ 199

HTTP APl manual for 2N devices
Example:

GET /api/call/answer?session=3

{

"success" : true

}

5.7.4 api call hangup
The /api/call/hangup helps you hang up an active incoming or outgoing call.

The function is part of the Phone/Call service and the user must be assigned the Phone/Call
Control privilege for authentication if required. The GET or POST method can be used for this
function.

Request parameters:

Parameter Description
session Active incoming/outgoing call identifier

reason End call reason:
normal - normal call end (default value)
rejected - call rejection signalling

busy - station busy signalling

The reply is in the application/json format and includes no parameters.

Example:

GET /api/call/hangup?session=4
{

"success" : true

}

A2/ 199

HTTP APl manual for 2N devices

5.8 api camera
The following subsections detail the HTTP functions available for the api/camera service.

« 5.8.1 api camera caps
 5.8.2 api camera snapshot

5.8.1 api camera caps

The /api/camera/caps function returns a list of available video sources and resolution options
for JPEG snapshots to be downloaded via the /api/camera/snapshot function.

The function is part of the Cameraservice andthe user must be assigned the Camera
Monitoring privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.

The reply is in the application/json format and includes a list of supported resolutions of JPEG
snapshots (jpegResolution) and a list of available video sources (sources), which can be used in
the /api/camera/snapshot parameters.

Parameter Description
width, height Snapshot resolution in pixels
source Video source identifier

A2/ 199

HTTP APl manual for 2N devices

Example:

GET /api/camera/caps

{
"success" : true,
"result" : {
"jpegResolution" : [
{
"width" : 160,
"height" : 120
3,
{
"width" : 176,
"height" : 144
3,
{
"width" : 320,
"height" : 240
3,
{
"width" : 352,
"height" : 272
3,
{
"width" : 352,
"height" : 288
3,
{
"width" : 640,
"height" : 480
}
1,
"sources" : [
{
"source" : "dinternal"
3,
{
"source" : "external"
}
]
}
}

5.8.2 api camera snapshot

The /api/camera/snapshot function helps you download images from an internal or external IP
camera connected to the intercom. Specify the video source, resolution and other parameters.

The function is part of the Cameraservice andthe user must be assigned the Camera
Monitoring privilege for authentication if required.

R4/ 199

HTTP APl manual for 2N devices

The GET or POST method can be used for this function.

Request parameters:

width

height

source

fps

time

Description

Mandatory parameter specifying the horizontal resolution of the
JPEG image in pixels. The snapshot resolution must comply with
one of the supported options (see api/camera/caps). If an
unsupported value is entered, the request will not be executed.

Mandatory parameter specifying the vertical resolution of the
JPEG image in pixels. The snapshot height and width must
comply with one of the supported options (see api/camera/
caps). If an unsupported value is entered, the request will not be
executed.

Optional parameter defining the video source (internal -
internal camera, external - external IP camera). If the parameter
is not included, the default video source included in the
Hardware > Camera > Common settings section of the
configuration web interface is selected.

Optional parameter defining the frame rate. If the parameter is
set to 21, the intercom sends images at the set frame rate using
the http server push method.

Optional parameter defining the snapshot time in the intercom
memory. The time values must be within the intercom memory
range: <-30, 0> seconds.

When this parameter is used together with the fps parameter,
the fps parameter is ignored and function returns only a single
frame.

When this parameter is used, the function returns snapshots of
the maximum resolution of 1280x960 px (widthxheight). Higher
width and height requests will be ignored.

The reply is in the image/jpeg or multipart/x-mixed-replace (pro fps = 1) format. If the request
parameters are wrong, the function returns information in the application/json format.

Example:

GET /api/camera/snapshot?width=640&height=480&source=1internal

A5/ 199

HTTP APl manual for 2N devices

following command returns a frame which was captured 5 seconds before the command
was executed
GET /api/camera/snapshot?width=1280&height=960&source=internal&time=-5

AR/ 109

HTTP APl manual for 2N devices

5.9 api display
The following subsections detail the HTTP functions available for the api/display service.

« 5.9.1 api display caps
« 5.9.2 apidisplay image

5.9.1 api display caps

The /api/display/caps function returns a list of device displays including their properties. Use
the function for display detection and resolution.

The function is part of the Display service andthe user must be assigned the Display
Control privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.

The reply is in the application/json format and includes a list of available displays (displays).

Parameter Description
display Display identifier

resolution Display resolution in pixels

A7/ 199

HTTP APl manual for 2N devices

Example:

GET /api/display/caps

{
"success" : true,
"result" : {
"displays" : [
{
"display" : "dinternal",
"resolution" : {
"width" : 320,
"height" : 240
3
3
]
3
3

5.9.2 api display image

®
2N IP Style

The /api/display/image function helps you modify the content to be displayed: upload a GIF /
JPEG image to or delete an earlier uploaded image from the display. Progressive JPEG images
are not supported.

The function is part of the Display service andthe user must be assigned the Display
Control privilege for authentication if required.

The PUT or DELETE method can be used for this function: PUT helps upload an image to the
display, DELETE helps delete an uploaded image from the display.

PUT method

Request parameters:

Para Description
mete

blob Mandatory parameter containing a JPEG / BMP / PNG image with 1280 x 800 display
- resolution (refer to [api/display/caps). The parameter is applied only if the PUT
ima method is used. Progressive JPEG images are not supported.

dura Optional parameter. Image display time. The parameter is set in milliseconds.
tion

AR/ 199

HTTP APl manual for 2N devices

There are two ways how to display an image: as a notification or as an overlay. Notifications are
displayed for a predefined period of time and automatically disappear after the timeout.
Overlays keep displayed until replaced with another image or removed by the user.

If the HTTP request does not include an optional parameter, the image is displayed in the
overlay mode, i.e. uploaded for an indefinite period of time. If an optional parameter is included,
the image is displayed in the notification mode, which ends when a preset timeout expires.
Touch the display to end the notification earlier.

When uploaded for the first time, the image is transferred from the main unit to the display via
an internal bus (which may take some time). Several images may be stored in the display
memory and if the same images are sent to the device in the future, they are no longer
transferred via the internal bus. They are immediately displayed from the memory instead.

The reply is in the application/json format and includes no parameters.

Image parameters:
Model Image size Supported formats
2N’ IP Style 1280 x 800 pixels Normal JPEG (recommended), PNG
& Note

+ The supported JPEG format is JPEG Baseline (non-progressive encoding).

Example:

PUT api/display/image&duration=30000
{

"success" : true

}

A9/ 199

HTTP APl manual for 2N devices

DELETE method

Parameter Description

display Mandatory display identifier. Find the value in Hardware/Extending modules/
Module name or using [api/display/caps.

Example:

DELETE api/display/image

{
"success" : true
}
®
2N [P Verso

The /api/display/image function helps you modify the content to be displayed: upload a GIF /
JPEG / BMP image to or delete an earlier uploaded image from the display. Progressive JPEG
images are not supported.

The function is part of the Display service andthe user must be assigned the Display
Control privilege for authentication if required.

The PUT or DELETE method can be used for this function: PUT helps upload an image to the
display, DELETE helps delete an uploaded image from the display.

PUT method

Request parameters:

Para Description
mete
r

disp Mandatory display identifier. Find the value in Hardware/Extending modules/Module
lay name or using /api/display/caps.

blob Mandatory parameter containing a JPEG / BMP / PNG image with 320 x 214 display
- resolution (refer to /api/display/caps). The parameter is applied only if the PUT
ima method is used. The request may contain just one parameter: blob-image or blob-
ge video. Progressive JPEG images are not supported.

70/ 199

HTTP APl manual for 2N devices

Para Description
mete

blob Mandatory parameter containing an MPEG4 / H264 video of the maximum duration of
- 60 s, maximum of 15 fps and resolution of 320 x 214 pixels. The request may contain
vide just one parameter: blob-image or blob-video.

dura Optional parameter. Image display / video playing time. The parameter is set in
tion milliseconds.

repe Optional parameter. Video playing repetition count. The parameter applies to video
at only.

There are two ways how to display an image: as a notification or overlay. Notifications are
displayed for a predefined period of time and automatically disappear after the timeout.
Overlays keep displayed until replaced with another image or removed by the user.

If the HTTP request does not include any of the above mentioned optional parameters, the
overlay mode is used, i.e. the image is displayed for an indefinite period of time. If both the
optional parameters are included, the notification is terminated by the event that is generated
earlier. Touch the display to end the notification earlier.

When uploaded for the first time, the image is transferred from the main unit to the display via
an internal bus (which may take some time). Several images may be stored in the display
memory and if the same images are sent to the device in the future, they are no longer
transferred via the internal bus. They are immediately displayed from the memory instead.

The reply is in the application/json format and includes no parameters.

Image parameters:
Model Image size Supported formats
2N° IP Verso 320 x 214 pixels Normal JPEG (recommended), BMP,
PNG
& Note

+ The supported JPEG format is JPEG Baseline (non-progressive encoding).

71/ 199

HTTP APl manual for 2N devices

Example:

api/display/image?display=extl&duration=30000

{
"success" : true
3
Video parameters:
Model Video size Supported formats

2N°IP Verso 214 x 240 pixels MPEG4 / H264: Baseline profile, up to 5.2 level

Example:

api/display/image?display=extl&repeat=5
{

"success" : true

}

DELETE method

Parameter Description

display Mandatory display identifier. Find the value in Hardware/Extending modules/
Module name or using [api/display/caps.

Example:

DELETE /api/display/image?display=extl

{
"success" : true
1
® .
2N |P Vario

The /api/display/image function helps you modify the content to be displayed: upload a GIF /
JPEG / BMP image to or delete an earlier uploaded image from the display.

77/ 199

HTTP APl manual for 2N devices

The function is part of the Display service andthe user must be assigned the Display
Control privilege for authentication if required.

The PUT or DELETE method can be used for this function: PUT helps upload an image to the
display, DELETE helps delete an uploaded image from the display.

Request parameters:
Parameter Description
display Mandatory display identifier (internal).
blob-image Mandatory parameter including an image in the supported

format with display resolution (see [api/display/caps). The
parameter is applied only if the PUT method is used.

The reply is in the application/json format and includes no parameters.

Image parameters:
Model Image size Supported formats
2N° IP Vario 320 x 240 pixels JPEG (recommended), GIF, BMP
& Caution

The supported JPEG format is JPEG Baseline (non-progressive encoding).

Example:

DELETE /api/display/image?display=internal
{

"success" : true

}

« 5.9.2.1 api display image examples

73/ 199

HTTP APl manual for 2N devices

5.9.2.1 api display image examples

The below-mentioned examples help sending data from the control application to the 2N°IP
Verso and 2N° IP Vario displays.

An image can be displayed either as a notification or overlay. 2N’ IP Verso can display images in

either way, 2N° IP Vario can only display notifications. Notifications are displayed for a pre-
defined time and disappear automatically after this timeout. Overlays keep displayed until
replaced with another image or removed by the user.

The *duration* parameter gives the image/video display time in ms.
The *repeat* parameter specifies the count of video repetitions and is ignored for images.

If the HTTP request does not include any of the above-mentioned parameters, the overlay mode
is used, i.e. the image is displayed for an indefinite period of time. If both the parameters are
included, the display is terminated by the event that happens first.

74/ 199

HTTP APl manual for 2N devices

Image Loading to 2N° 1P Verso/2N® IP Vario Display

@ Note

Each model supports a different image resolution.

Model Image size Supported formats
2N° IP Verso 214 x 240 pixels JPEG (recommended), BMP, PNG
2N° IP Vario 320 x 240 pixels JPEG (recommended), GIF, BMP

Request URL: https://10.27.24.15/api/display/image?display=ext1l

+ Request method: PUT

+ Remote address: 10.27.24.15:443
« Status code: 200 OK

» Version: HTTP/1.1

Response headers (95 B)

« Server: HIP2.22.0.31.1
+ Content-Type: application/json
+ Content-Length: 24

Request headers (494 B)

« Host: 10.27.24.15

+ User-Agent: Mozilla/5.0 (Windows NT 6.1; W...) Gecko/20100101 Firefox/56.0

+ Accept: */*

+ Accept-Language: cs,en-US;q=0.7,en;q=0.3

+ Accept-Encoding: gzip, deflate, br

+ Referer: https://10.27.24.15/apitest.html

+ Content-Length: 1325

« Content-Type: multipart/form-data; boundary=...-------------- 258852674219952
+ Cookie: _ga=GA1.1.375392382.1496656977...id=GA1.1.638680516.1507547865
« Connection: keep-alive

75/ 199

https://10.27.24.15/api/display/image?display=ext1
https://10.27.24.15/apitest.html

HTTP APl manual for 2N devices

Query string
« display: extl

Request payload

258852674219952
Content-Disposition: form-data; name="blob-image"; filename="picture.png"

Content-Type: image/png

%0PNG
IHDR 6 d ot
R sRGB ®ié gAMA +Zia pHYs A ACo"d GIDATx*iRNqU8@N0e.,\0Sq3)C»Z24Y,$T'0

[-180C\f 2}

@J,ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , AS
HL,ASHL,ASHL ,ASHL , ASHL , ASHL ,ASH&: [Z}Gi9ytaIzy /1@, SIP, +xL@¢ +0\-6Urb; Zkz Fa8001 -
f)EyBILdcZd+mTt. JEbYvV? "m| ;éIABIKAO < >a+¥t/>dY,Z$A9+A4[SCC/Al

") é26CNRES[\ quZNd%AR©Oz0SA SI6U6—xmcET%x | §2Z1Eq ° | T E5céw-“" &0 o}

8%, 1178 »1IMA9;A40" %, TbwliHI_AC“$—fq | 7TET—F« : +At dDAUGg= ;6 128) AiZak « VEFIKR_'A

R+Xx9FCYL | O«YECC+402@fa|222-UsL 155848 (\MTKIABIU-8481 | x~-A=r«f%SteflS-+Ld+ CY<>YRO x|
57¢l?N , ddWTR%efa#R” €023, i’ FA471A4]Y , u—Jp630

ER,;u!

R

{

A

Wo

ER

kxEx®D, ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL ,ASH
L,ASHL,ASHL,ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASH
L,ASHL,ASHL,ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASH
L,ASHL,ASHL,ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASH
L,ASHL,ASHL ,ASHL , ASHL ,ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , ASHL , x>>
t+uKéz<: - IEND®B",

————————————————————————————— 258852674219952--

Video Loading to 2N” IP Verso Display

@® Info
Model Video size Supported formats
2N° IP Verso 214 x 240 pixels MPEG4 / H264: Baseline profile, level up to 5.2

Request URL: https://10.27.24.15/api/display/image?
display=extl&duration=20&repeat=3

76/ 199

https://10.27.24.15/api/display/image?display=ext1&duration=20&repeat=3

HTTP APl manual for 2N devices

+ Request method: PUT

+ Remote address: 10.27.24.15:443
 Status code: 200 OK

» Version: HTTP/1.1

Response headers (95 B)

« Server: HIP2.22.0.31.1
+ Content-Type: application/json
+ Content-Length: 24

Request headers (516 B)

« Host: 10.27.24.15

+ User-Agent: Mozilla/5.0 (Windows NT 6.1; W...) Gecko/20100101 Firefox/56.0

+ Accept: */*

+ Accept-Language: cs,en-US;q=0.7,en;q=0.3

+ Accept-Encoding: gzip, deflate, br

« Referer: https://10.27.24.15/apitest.html

+ Content-Length: 943815

« Content-Type: multipart/form-data; boundary= 14948718218673
+ Cookie: _ga=GA1.1.375392382.1496656977...id=GA1.1.638680516.1507547865

+ Connection: keep-alive

Query string

+ display - extl
+ duration - 20
» repeat-3

Request payload

14948718218673

77/ 199

https://10.27.24.15/apitest.html

HTTP APl manual for 2N devices

Content-Disposition: form-data; name="blob-video"; filename="2N_intro.mp4"

Content-Type: video/mp4

ftypmp42 -dsomiso2avclmp4l free O!mdat - HEE&CEUH--,R U#idx264 - core 148 r2708
86b7198 - H.264/MPEG-4 AVC codec - Copyleft 2003-2016 - http://www.videolan.org/
x264.html - options: cabac=0 ref=2 deblock=0:0:0 analyse=0x1:0x111 me=hex subme=6
psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=0 cqm=0
deadzone=21,11 fast_pskip=1 chroma_qgp_offset=-2 threads=6 lookahead_threads=1
sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0
bframes=0 weightp=0 keyint=150 keyint_min=15 scenecut=40 intra_refresh=0
rc_lookahead=30 rc=crf mbtree=1 crf=22.0 qcomp=0.60 gpmin=0 gpmax=69 qpstep=4
vbv_maxrate=20000 vbv_bufsize=25000 crf_max=0.0 nal_hrd=none filler=0 ip_ratio=1.40
ag=1:1.00 € 6e", °CtU!g@ Cz'NbyRESNO~"$] 1 :TFbO~Gh M=>?

, MIRZ auWjZ« ,AzZ” K 027 #SDITU~éA6UEGADS (iPe? n?é!28{-UTTE«“b»294T"G

LZ . "Gk OFZdyx\U’2jo ,..z2"x Ok&+y tFG kii,3 "R|p« i, "Uz0z XalEZaRIS €pR! >11€ZaMfOodl_,,0,,)
¢I1f6,RE 122 _2AL| ZF{> F11&/1z1+dt~»RzT<vW

iz/3tD etfetqR Oy9Esziy-$

%o U

A

Oirn =i+ N

TJux]wU

Py

"y

y
79 DCSI 1$107e28°56°0568°0186°58°56°056°58°56°058%7 OxXCi5%0®58°58® : 0 48y ZZS0{@0s6t«@‘uluxsS-,
\TtL-p°6-X 1" G§Anel faUi3s /26" Giz...

14948718218673--

5.10 api log
The following subsections detail the HTTP functions available for the api/log service.

« 5.10.1 api log caps

+ 5.10.2 api log subscribe

+ 5.10.3 api log unsubscribe
+ 5.10.4 api log pull

5.10.1 api log caps

The /api/log/caps function returns a list of supported event types that are recorded in the
device. This list is a subset of the full event type list below:

7R/ 199

Event type

AccessBlocked

AccessLimited

AccessTaken

ApiAccessRequested

AudioLoopTest

CallSessionStateCha
nged

CallStateChanged

CapabilitiesChanged

CardHeld

HTTP APl manual for 2N devices

Description

Signals blocking of user authentication,
zone code, REX exit button and license
plate based access on an access point.

An event occuring whenever 5 unsuccessful
user authentication attempts are made
(card, code, fingerprint). The access
module is blocked for 30 seconds even in
case the subsequent authentication is
correct. Signals user rejection.

When applying the card in the
Antipassback area.

An event whenever a request was sent to /
api/accesspoint/grantaccess with the
result "success" : true.

Signals performance and result of an
automatic audio loop test.

An event describing the direction, status of
the call, address, created session number
and how many calls were generated.

Indicates call direction (incoming,
outgoing) and SIP/opponent identification
at a call state change (ringing, connected,
terminated).

Signals a change in available functions.

Signals RFID card tapping and holding for
more than 4s.

Parameters

Permanent

llap,
state"

"ap, type,

state"

"ap,
session"

||ap’
valid"

"result"

"session,
state"

"directio
n, state,
peer,
session,
call"

"reader,
uid,
valid"

Conditione
d

"session,
uuid"

"originato
r, info"

"reason,
device,
sipAccoun
t,
sipCallld "

"ap,
session,
direction,
uuid"

79/ 199

HTTP APl manual for 2N devices

Event type Description Parameters

Permanent Conditione

d
CardEntered Signals tapping of an RFID card onthecard ~ "reader, "ap,
reader. uid, session,
valid" direction,
uuid"
CodeEntered Signals entering of a user code via the "code, "ap,
numeric keypad. valid " session,
direction,
input,
type,
uuid,
reason"
ConfigurationChang Signals a device configuration change.
ed
DeviceState Signals a system event generated at device "state"
state changes.
DisplayTouched Signals display touch. "X, Y, dx,
dyll
DirectoryChanged Change in the directory. "series" "timesta
mpll
DirectorySaved Saved change in the directory. "series" "timesta
mpll
DoorOpenToolLong Signals excessively long door opening or "state"
door closing failure within the timeout.
DoorStateChanged Signals a door state change. "state"
DtmfEntered DTMF code received in call or off call "code, "type,
locally. call, uuid"
valid"
DtmfPressed DTMF code pressed in call or off call locally. "code,
call valid"

&N/ 199

Event type

DtmfSent

ExternalCameraStat
eChanged
ErrorStateChanged

FingerEntered

FingerEnrollState

HardwareChanged

CheckingCall

InputChanged

KeyPressed

KeyReleased

LicensePlateRecogni
zed

HTTP APl manual for 2N devices

Description

DTMF code sent in call or off call locally.

Signals an external camera state change.

Signals a LiftIP 2.0 error state change.

Signals that a finger has been swiped
across the biometric reader.

Placing a finger on the reader to record the
user's fingerprint.

Signals a connection change of the
extending modules.

Displays details of an accomplished
checking call.

Signals a logic input state change.

Signals a quick dial/numerical keypad
button press, display touch or Bluetooth
autentication key press.

Signals a quick dial/numerical keypad
button release.

Signals car license plate recognition for
valid access.

Parameters

Permanent

Ilcodell

"state"

"valid"

"session,
state"

"reason,
class, id"

"port,
state"

|lkey

llkeyﬂ

"ap,
licensePl
ate,
valid"

Conditione
d

llcallll

"id,
reason"

"in, state,
reason"

"ap,
session,
direction,
uuid"

"info,
config,
state,
categories

"action"

"session,
uuid"

]1/ 199

Event type

LiftConfigChanged

LiftErrorStateChang

ed

LiftFloorsEnabled

LiftStatusChanged

LoginBlocked

MobKeyEntered

MotionDetected

HTTP APl manual for 2N devices

Description

Signals an elevator control setting change.

Signals a LiftIP 2.0 error state change.

Floor access by an elevator.

Lift Control module connection/
disconnection detection.

Signals temporary blocking of login to the
web interface.

Signals Bluetooth reader authentication.

Signals motion detection via a camera.

Parameters

Permanent

|lhashll

"floors"

"module,
ready"

"address"

"action,
authid,
valid"

ID=
correspo
nds to the
motion
detection
profile
number
inthe
web
interface

"state"

Conditione
d

"in, state,
reason"

"uuid,
session"

"ap,
session,
direction,
uuid"

{2/ 199

Event type

NoiseDetected

OutputChanged

PairingStateChange
d

RescueStateChange
d

RegistrationStateCh
anged

RexActivated

SilentAlarm

SwitchesBlocked

HTTP APl manual for 2N devices

Description

Signals increased noise level detection.

Signals a logic output state change.

Signals pairing with a Bluetooth interface.

Signals a rescue state change.
Signals a SIP server registration state
change.

Signals REX departure button activation.

Signals silent alarm activation.

Signals lock blocking by tamper switch
activation.

Parameters

Permanent

only for
models
equipped
with a
micropho
ne or
micropho
neinput

"state"

"port,
state"

"state,
authld"

"sipAccou
nt, state"

"ap,
session,
valid"

"ap,
session,
name"

"state"

Conditione
d

"state,
reason"

"reason"

"reason"

"uuid"

]R3/ 199

Event type

SwitchOperationCh
anged

SwitchStateChange
d

TamperSwitchActiv
ated

UnauthorizedDoorO
pen

UserActionActivated

UserAuthenticated

UserRejected

Virtuallnput

HTTP APl manual for 2N devices

Description

Change in the operation of the switch
(signals the state of locking or holding the
switch, starting and restarting the timer or
ending it - transition to permanent
holding).

Signals a switch 1-4 state change.

Signals tamper switch activation.

Signals unauthorized door opening.

Signals a change of the input configured as
User Action Trigger.

Signals user authentication and

subsequent door opening.

Signals user authentication rejection.

Changing the virtual input.

Parameters

Permanent

"switch"

"switch,
state"

"state"

only for
models
equipped
with
digital
inputs

"state"

"id,
state"

"ap,
session,
name"

"ap,
session,
name"

"port,
state"

Conditione
d

"enabled,
locked,
held,
hold_time
out,
originator

"ap,
session,
originator
, call,
peer,
device"

"uuid,
apbBroke
nll

"uuid,
reason"

{4/ 199

HTTP APl manual for 2N devices

Event type Description Parameters

Permanent Conditione

d
VirtualOutput Changing the virtual output. "port,
state"
WaveKeyActivated Bluetooth authentication activated. "type"
The function is part of the Logging service and requires no special user privileges.
The GET or POST method can be used for this function.
The function has no parameters.
The reply is in the application/json format:
Parameter Type Description
events array Array of strings including a list of supported
event types
Example:

GET /api/log/caps

{
"success" : true,
"result" : {

"events" : [
"KeyPressed",
"KeyReleased",
"InputChanged",
"OutputChanged",
"CardEntered",
"CallStateChanged",
"AudioLoopTest",
"CodeEntered",
"DeviceState",
"RegistrationStateChanged"

{K/ 199

HTTP APl manual for 2N devices

5.10.2 api log subscribe

The /api/log/subscribe function helps you create a subscription channel and returns a unique
identifier to be used for subsequent dialling of the/apif/log/pull or /api/log/
unsubscribe function.

Each subscription channel contains an event queue of its own. All the new events that match the
channel filter (filter parameter) are added to the channel queue and read using the /api/log/
pull function.

At the same time, the device keeps the event history queue (last 10000 events) in its internal
memory. The event history queue is empty by default.

Use the include parameter to specify whether the channel queue shall be empty after restart
(storing of events occurring after the channel is opened), or be filled with all or some events
from the event history records.

Use the duration parameter to define the channel duration if it is not accessed via /api/log/pull.
The channel will be closed automatically when the defined timeout passes as if the /api/log/
unsubscribe function were used.

The function is part of the Logging service and requires some user privileges for authentication.
Unprivileged user events shall not be included in the channel queue.

Table of events:

Event type Required user privileges
TamperSwitchActivated None
UnauthorizedDoorOpen None
DoorOpenTooLong None
LoginBlocked None
SilentAlarm None
DoorStateChanged None
DeviceState None
AudioLoopTest None
MotionDetected None
NoiseDetected None
HardwareChanged None

fA / 199

Event type
FingerEnrollState
LiftStatusChanged
LiftFloorsEnabled
LiftConfigChanged
CapabilitiesChanged

ConfigurationChanged

ExtCameraStateChanged

RescueStateChanged
ErrorStateChanged
LiftCheckingCall
DtmfSent
RexActivated
AccessBlocked
AccessTaken
AccessLimited
DisplayTouched
DtmfPressed
SwitchesBlocked
InputChanged
OutputChanged
VirtuallnputChanged

VirtualOutputChanged

HTTP APl manual for 2N devices

Required user privileges
None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

I/O monitoring
I/O monitoring
I/O monitoring

I/O monitoring

{7/ 199

Event type
SwitchStateChanged
SwitchOperationChanged
UserActionActivated
CardEntered
CardHeld
DtmfEntered
PairingStateChanged
MobKeyEntered
WaveKeyEntered
FingerEntered

UserAuthenticated

UserRejected
CallStateChanged
CallSessionStateChanged
RegistrationStateChanged
DirectoryChanged
DirectorySaved

ApiAccessRequested
LicensePlateRecognized

KeyPressed

KeyReleased

HTTP APl manual for 2N devices

Required user privileges

|/O monitoring

I/O monitoring

I/O monitoring

UID monitoring (cards/Wiegand)
UID monitoring (cards/Wiegand)
UID monitoring (cards/Wiegand)
UID monitoring (cards/Wiegand)
UID monitoring (cards/Wiegand)
UID monitoring (cards/Wiegand)

UID monitoring (cards/Wiegand)

UID monitoring (cards/Wiegand)
UID monitoring (cards/Wiegand)
Call/phone monitoring
Call/phone monitoring
Call/phone monitoring

System monitoring

System monitoring

Access Control Monitoring
Access Control Monitoring

Keypad monitoring

Keypad monitoring

{R]/ 199

HTTP APl manual for 2N devices

Event type Required user privileges

CodeEntered Keypad monitoring

R0/ 199

The GET or POST method can be used for this function.

Request parameters:
Parameter Type Mandatory Default value
include string No new
filter list No no filter

HTTP APl manual for 2N devices

Description

Define the events to be added to
the channel event queue:

new - only new events occurring
after channel creation

all - all events recorded so far
including those occurring after
channel creation

-t - all events recorded in the last
t seconds including those
occurring after channel creation
(-10,e.g.)

List of required event types
separated with commas.

The parameter is optional and, if
not included, all the event types
of the device are transmitted via
the channel that are not hidden
by default. Itis necessary to
request the hidden events in this
parameter to get them.

Events hidden by default:

« FingerEnrollState

+ DirectorySaved

+ DirectoryChanged

« HardwareChanged

+ DisplayTouched

+ PairingStateChanged

« LiftConfigChanged

« CapabilitiesChanged

+ ConfigurationChanged

+ ExtCameraStateChanged

an/ 199

HTTP APl manual for 2N devices

Parameter Type Mandatory Default value Description

duration uint32 No 90 Define a timeout in seconds after
which the channel shall be closed
automatically if no /api/log/pull
reading operations are in
progress. Every channel reading
automatically extends the
channel duration by the value
included here. The maximum
value is 3600 s.

The reply is in the application/json format and includes an identifier created by subscription.

Parameter Type Description

id uint32 Unique identifier created by subscription

a1/ 199

HTTP APl manual for 2N devices

Example:

GET /api/log/subscribe?filter=KeyPressed,InputChanged

{
"success" : true,
"result" : {
"id" : 2121013117
3
3

5.10.3 api log unsubscribe

The /api/log/unsubscribe function helps you close the subscription channel with the given
identifier. When the function has been executed, the given identifier cannot be used, i.e. all
subsequent /api/log/pull or /api/log/unsubscribe calls with the same identifier will end up with
an error.

The function is part of the Logging service and requires no special user privileges.
The GET or POST method can be used for this function.

Request parameters:
Parameter Type Mandatory Default value Description
id uint32 Yes - Identifier of the existing

channel obtained by
preceding dialling of /api/
log/subscribe

The reply is in the application/json format and includes no parameters.

Example:

GET /api/log/unsubscribe?id=21458715
{

"success" : true,

}

5.10.4 api log pull

The [api/log/pull helps you read items from the channel queue (subscription) and returns a list
of events unread so far or an empty list if no new event is available. Larger amounts of events are
pulled in batches of 128 events.

Use the timeout parameter to define the maximum time for the intercom to generate the reply.
If there is one item at least in the queue, the reply is generated immediately. In case the channel

Q7 / 199

HTTP APl manual for 2N devices

queue is empty, the intercom puts off the reply until a new event arises or the defined timeout
elapses.

The function is part of the Logging service and requires no special user privileges. Reading
events is conditioned by the privilege allowing the user to monitor such events, refer to 5.10.2
api log subscribe for the event table.

The GET or POST method can be used for this function.

Request parameters:
Parameter Type Mandatory Default value Description
id uint32 Yes - Identifier of the existing
channel created by preceding
dialling of /api/log/subscribe
timeout uint32 No 0 Define the reply delay (in

seconds) if the channel queue is
empty. The default value 0
means that the intercom shall
reply without delay.

The reply is in the application/json format and includes a list of events.

Parameter Type Description

events array Event object array. If no event occurs during the
timeout, the array is empty.

a3/ 199

https://wiki.2n.com/display/HIPHA215CZ/.5.10.2+api+log+subscribe+v2.40

Example:

GET /api/log/pull

{
"success" : true,
"result" : {
"events" : [
{
"id" : 1,
"tzShift" : 0,
"utcTime" : 1437987102,
"upTime" : 8,
"event" : "DeviceState",
"params" : {
"state" : "startup"
}
s
{
"id" 3,
"tzShift" : 0,
"utcTime" : 1437987105,
"upTime" : 11,
"event" : "RegistrationStateChanged",
"params" : {
"sipAccount" : 1,
"state" : "registered"
}
}
]
}
}

HTTP APl manual for 2N devices

a4 / 199

Events

HTTP APl manual for 2N devices

Each event in the events field includes the following common information:

Parameter

id

utcTime

upTime

tzShift

event

params

Type

uint32

uint32

uint32

int32

string

object

Description

Internal event record ID (32bit number, 1 after
intercom restart incremented with every new
event)

Absolute event rise time (Unix Time, UTC)

Relative event rise time (seconds after intercom
restart)

Difference between the local time and
Coordinated Universal Time (UTC) in minutes.

Add this value to utcTime to obtain the local
time of event generation according to the device
time zone:

localTime = utcTime + tzShift * 60

Event type (KeyPressed, InputChanged, ...)

Specific event parameters

a5/ 199

DeviceState
Signals the device state changes.

Event parameters:

Parameter Type
state string
Example:
{
"id" : 1,

"tzShift" : 0,
"utcTime" : 1437987102,

"upTime" : 8,
"event" : "DeviceState",
"params" : {

"state" : "startup"

}
}

HTTP APl manual for 2N devices

Description

Signalled device state:

startup - generated one-time after device start

(always the first event ever)

aa / 199

HTTP APl manual for 2N devices

AudioLoopTest

Signals performance and result of an automatic audio loop test. The event is signalled whenever
the automatic test has been performed (either scheduled or manually started).

Parameter Type Description

result string Result of an accomplished text:

passed - the test was carried out successfully,
no problem has been detected.

failed - the test was carried out, a loudspeaker/
microphone problem has been detected.

Example:

"id" : 26,

"tzShift" : 0,
"utcTime" : 1438073190,
"upTime" : 9724,

"event" : "AudiolLoopTest",
"params" : {
"result" : "passed"

}
}

a7/ 199

HTTP APl manual for 2N devices

MotionDetected

Signals motion detection via a camera. The event is available in camera-equipped models only.
The event is generated only if the function is enabled in the intercom camera configuration.

Event parameters:

Parameter Type Description

state string Motion detector state:

in - signals the beginning of the interval in
which motion was detected.

out - signals the end of the interval in which
motion was detected.

Example:
"idno: 2,

"tzShift" : 0,
"utcTime" : 1441357589,

"upTime" : 1,
"event" : "MotionDetected",
"params" : {

"state" : "in"

}
}

a] / 199

NoiseDetected

HTTP APl manual for 2N devices

Signals an increased noise level detected via an integrated or external microphone. The event is
generated only if this function is enabled in the intercom configuration.

Event parameters:

Parameter Type
state string
Example:
{
"id" i o2,

}

"tzShift" : 0,
"utcTime" : 1441357589,

"upTime" : 1,
"event" : "NoiseDetected",
"params" : {

"state" : "in"

}

Description

Noise detector state:

in - signals the beginning of the interval in
which noise was detected.

out - signals the end of the interval in which
noise was detected.

Q9 / 199

KeyPressed and KeyReleased

HTTP APl manual for 2N devices

Signals pressing (KeyPressed) or releasing (KeyReleased) of speed dial or numeric keypad

buttons.

Event parameters:

Parameter

key

Example:

nidv x4,
"tzShift" : o,

"utcTime" : 1437987888,

"upTime" : 794,

"event" : "KeyPressed",
"params" : {

llkeyll : |l5|l
}

}

Type

string

Description

Pressed/released button code:

0 to 9 - numeric keypad buttons
%1-%150 - speed dialling buttons
* — button with a * or phone symbol

- button with a # or key symbol

100/ 199

CodeEntered

HTTP APl manual for 2N devices

Signals entering of a user code via the numeric keypad. The event is generated in numeric

keypad equipped devices only.

Event parameters:

Parameter Type

ap string
session string
direction string
code string
type string
uuid string
valid boolean

Description
Access Point, available states: 0 = entry, 1 = exit

Informs how many times the code has been
entered.

Code direction:

in - arrival

out - departure

any - passage

Note: Set the card reader direction using the
intercom configuration interface.

User code, 1234, e.g. The code includes 2 digits
at least and 00 cannot be used.

User's unique ID

Code validity (i.e. if the code is defined as a valid
user code or universal switch code in the
intercom configuration):

false - invalid code

true - valid code

101/ 199

HTTP APl manual for 2N devices

Example:

"id" : 128,

"tzShift" : 0,
"utcTime" : 1548078453,
"upTime" : 1061,

"event" : "CodeEntered",
"params" : {
llapll : O’
"session" : 8,
"direction" : "in",
"code" : "1234",
lltypell : Iluserll,
"uuid" : "54877b0e-4cc3-c645-9530-6¢c7850f47a9c",
"valid" : true
3

102 / 199

HTTP APl manual for 2N devices

CardEntered

Signals tapping an RFID card on the card reader. The event is generated in RFID card reader
equipped devices only.

Event parameters:

Parameter Type Description
ap string Access Point, available states: 0 = entry, 1 = exit
session Informs how many times the card has been
applied.
direction string RFID direction:
in - arrival

out - departure
any - passage

Note: Set the card reader direction using the
intercom configuration interface.

reader string RFID card reader/Wiegand module name, or one
of the following non-modular intercom model
values:

internal - internal card reader (2N IP
intercoms)

external - external card reader connected via
the Wiegand interface

Note: Set the card reader name using the
intercom configuration interface.

uid string Unique identifier of the applied card
(hexadecimal format, 6 - 16 characters
depending on the card type)

uuid string User's unique ID

102/ 199

HTTP APl manual for 2N devices

Parameter Type Description

valid boolean Validity of the applied RFID card (if the card uid is
assigned to one of the intercom users listed in
the phonebook)

false - invalid card

true - valid card

Example:

"id" : 60,

"tzShift" : 0,
"utcTime" : 1548078014,
"upTime" : 622,

"event" : "CardEntered",
"params" : {
"ap" : 0,
"session" : 5,
"direction" : "in",
"reader" : "ext2",
"uid" : "4BD9E903",
"uuid" : "54877b0e-4cc3-c645-9530-6¢c7850f47a9c",
"valid" : true
}

104/ 199

HTTP APl manual for 2N devices

InputChanged and OutputChanged

Signals a state change of the logic input (InputChanged) or output (OutputChanged). Use the /
api/io/caps function to get the list of available inputs and outputs.

Event parameters:

Parameter Type Description
port string |/O port name
state boolean Current 1/0O port logic state:

false - inactive, log. 0

true - active, log. 1
Example:
"id" : o2,

"tzShift" : 0,
"utcTime" : 1437987103,

"upTime" : 9,

"event" : "OutputChanged",
"params" : {
"port" : "led_secured",
"state" : false

}

}

105/ 199

HTTP APl manual for 2N devices

SwitchStateChanged
Signals a switch state change (refer to the intercom configuration in Hardware | Switches).

Event parameters:

Parameter Type Description
switch uint32 Switch number 1...4
state boolean Current logic state of the switch:

false - inactive, log.0

true - active, log.1

originator string Informs how the switch was activated.

profile - by transition to the preset active time
profile.

api - by http api (api/switch/ctrl).

ap - by user authentication at the access point.
The event is then completed with app and
session.

rex - by pressing the exit button (that opens the
door for a defined period of time for the person
to leave the room).

idt - by http api (api/switch/ctrl) if special
authentication for 2N° Indoor Touch 2.0,1.0
was used.

dtmf - by dtmf code in the call.

auth - authorization by a user / universal / zone
code.

uni - universal code authorization.
zone - zone code authorization.

automation - by an automation action.

106/ 199

HTTP APl manual for 2N devices

Example:

"id" o 2,

"tzShift" : 0,
"utcTime" : 1437987103,
"upTime" : 9,

"event" : "SwitchStateChanged",
"params" : {
"switch" : 1,
"state" : true
}

107 / 199

CallStateChanged

HTTP APl manual for 2N devices

Signals a setup/end/change of the active call state.

Event parameters:

Parameter

direction

state

peer

session

call

Type

string

string

string

uint32

uint32

Description

Call direction:
incoming - incoming call

outgoing - outgoing call

Current call state:

connecting - call setup in progress (outgoing
calls only)

ringing - ringing
connected - call connected

terminated - call terminated

SIP URI of the calling (incoming calls) or called
(outgoing calls) subscriber

Unique call identifier. Can also be used in the /
api/call/answer, /api/call/hangup and /api/
call/status functions.

TBD

10R / 199

HTTP APl manual for 2N devices

Example:

"id" : 5,

"tzShift" : 0,
"utcTime" : 1438064126,
"upTime" : 660,

"event" : "CallStateChanged",
"params" : {
"direction" : "dincoming",
"state" : "ringing",
"peer" : "sip:2229@10.0.97.150:5062;user=phone",
"session" : 1,
"call" : 1

109/ 199

RegistrationStateChanged

HTTP APl manual for 2N devices

Signals a change of the SIP account registration state.

Event parameters:

Parameter Type
sipAccount uint32
state string
Example:
{
"id" ok 3,

"tzShift" : 0,
"utcTime" : 1437987105,
"upTime" : 11,

"event" : "RegistrationStateChanged",
"params" : {

"sipAccount" : 1,

"state" : "registered"
}

}

Description

SIP account number showing a state
change:

1-SIPaccountl

2 - S|P account 2

New SIP account registration state:

registered - account successfully
registered

unregistered - account unregistered
registering - registration in progress

unregistering - unregistration in progress

110/ 199

HTTP APl manual for 2N devices

TamperSwitchActivated

Signals tamper switch activation - device cover opening. Make sure that the tamper switch
function is configured in the Digital Inputs | Tamper Switch menu.

Event parameters:
Parameter Type Description

state string Tamper switch state:

in - signals tamper switch activation (i.e.
device cover open).

out - signals tamper switch deactivation
(device cover closed).

Example:

"id" : 54,

"tzShift" : 0,
"utcTime" : 1441357589,
"upTime" : 158,

"event" : "TamperSwitchActivated",
"params" : {

"state" : "din"
}

}

111/ 199

HTTP APl manual for 2N devices

UnauthorizedDoorOpen

Signals unauthorized door opening. Make sure that a door-open switch is connected to one of
the digital inputs and the function is configured in the Digital Inputs | Door State menu.

Event parameters:
Parameter Type Description

state string Unauthorized door opening state:

in - signals the beginning of the unauthorized
opening state.

out - signals the end of the unauthorized door
opening state.

Example:

"id" : 80,

"tzShift" : 0,
"utcTime" : 1441367842,
"upTime" : 231,

"event" : "UnauthorizedDoorOpen",
"params" : {
"state" : "in"

}
}

112/ 199

HTTP APl manual for 2N devices

DoorOpenToolLong

Signals an excessively long door opening or failure to close the door within a timeout. Make sure
that a door-open switch is connected to one of the digital inputs and the function is configured
in the Digital Inputs | Door State menu.

Event parameters:
Parameter Type Description

state string DoorOpenToo Long state:

in - signals the beginning of the
DoorOpenToolLong state.

out - signals the end of the
DoorOpenToolLong state.

Example:

"id" : 96,

"tzShift" : 0,
"utcTime" : 1441369745,
"upTime" : 275,

"event" : "DoorOpenToolLong",
"params" : {

"state" : "out"
}

}

112/ 199

HTTP APl manual for 2N devices

LoginBlocked

Signals a temporary blocking of the web interface access due to repeated entering of an invalid
login name or password.

Event parameters:
Parameter Type Description

address string IP address from which invalid data were
entered repeatedly.

Example:

"id" : 5,

"tzShift" : 0,
"utcTime" : 1441369745,
"upTime" : 275,

"event" : "LoginBlocked",
"params" : {
"address" : "10.0.23.32"

}
}

114/ 199

HTTP APl manual for 2N devices

UserAuthenticated
Signals user authentication and subsequent door opening.

Event parameters:

Parameter Type Description

ap string Access Point, available states: 0 = entry, 1=
exit

session string Informs how many times the user has been

authenticated.

name string Specifies the name of the phone book user.
uuid string User's unique ID
apbBroken string Tapped card validity in Anti-passback.

false - inactive soft APB

true - active and broken soft ABP

Example:
{
"success" : true,
"result" : {
"events" : [
{
"id" : 65,

"tzShift" : 0,
"utcTime" : 1593606655,
"upTime" : 7951,

"event" : "UserAuthenticated",
"params" : {
llapH . O,
"session" : 6,
"name" : "Alice Gruberov\u@OE1l",
"uuid" : "8fa29ebc-2fe8-4a8c-9a3b-d8b0351fb6f8",
"apbBroken" : true
}

115/ 199

CardHeld

HTTP APl manual for 2N devices

Signals that an RFID card has been tapped on the reader for more than 4 s.

Event parameters:

Parameter
ap

session

direction

reader

uid

valid

Type

string

string

string

string

string

string

Description

Access Point, available states: 0 = entry, 1 = exit

Informs how many times the card has been
applied.

RFID direction:
in - arrival

out - departure
any - passage

Note: Set the card reader direction using the
intercom configuration interface.

Identification of the reader that read the card.

User uid for devices connected to the Access
Commander only. Devices disconnected from the
Access Commander do not send this parameter.

true, false

116/ 199

HTTP APl manual for 2N devices

Example:

ll-idll : 9’

"tzShift" : 0,
"utcTime" : 1516893493,
"upTime" : 354,

"event" : "CardHeld",

"params" : {
llap" : 1,
"session" : 4,
"direction" : "out",
"reader" : "ext2",
"uid" : "3FOOF318E7",
"valid" : true

}

117/ 199

SilentAlarm

Signals silent alarm activation.

Event parameters:

Parameter

ap

session

name

Example:

"idv i 200,
"tzShift" : o,

Type

string

string

string

"utcTime" : 1548079445,

"upTime" : 2053,

HTTP APl manual for 2N devices

Description

Access Point, available states: 0 = entry, 1=
exit.

Informs how many silent alarms have been
activated.

Specifies the phonebook username.

"event" : "SilentAlarm",
"params" : {
Hap" . G,
"session" :
"name" : "Joseph",
"uuid" : "54877b0e-4cc3-c645-9530-6¢c7850f47a9c"
}
}

11/ 199

AccessLimited

Signals rejection of the set user.

Event parameters:

Parameter

ap

type

state

Example:

"id" : 408,
"tzShift" : o,

Type

string

string

string

"utcTime" : 1517302112,

"upTime" : 408951,

"event" : "AccessLimited",
"params" : {

llapll : G,

lltypell : "Card”,

"state" : "din"
}

HTTP APl manual for 2N devices

Description

Access Point, available states: 0 = entry, 1=
exit.

card, code, finger

State, available values: in = active, out =
inactive.

119/ 199

PairingStateChanged
Signals pairing with a Bluetooth interface.

Event parameters:

Parameter Type
state string
authid string
Example:
{
"id" @ 197,

"tzShift" : 0,
"utcTime" : 1516894499,
"upTime" : 1360,

"event" : "PairingStateChanged",
"params" : {

"state" : "pending",

"authId" : "F2CAE955C9B4E81CDOOE3AO96E52543B"
}

HTTP APl manual for 2N devices

Description

pending

Authorisation ID

120/ 199

HTTP APl manual for 2N devices

SwitchesBlocked

Signals lock blocking by the tamper switch. If the function is enabled, all the switches get
blocked for 30 minutes whenever the tamper is activated. Blocking is active even after the
device restart

Event parameters:

Parameter Type Description
state string in, out
Example:
{
"id" : 205,

"tzShift" : 0, "utcTime" : 1516894667,
"upTime" : 1528,

"event" : "SwitchesBlocked",
"params" : {

"state" : "din"
}

}

121/ 199

FingerEntered

HTTP APl manual for 2N devices

Signals that a finger has been tapped on the biometric reader.

Event parameters:

Parameter Type

ap string
session string
direction string
uuid string
valid string

Description

Access Point, available states: 0 = entry, 1=
exit.

Informs how many times the finger has been
enrolled.

Fingerprint reader passage direction:
"in" - entry

"out" - exit

"any" - any direction

Note: Set the reader passage direction via the
intercom configuration interface.

User's unique ID

Fingerprint validity (if available as a valid user
fingerprint in the configuration)
false - invalid fingerprint

true - valid fingerprint

122/ 199

Example: Reading of a user's fingerprint

}

"id" : 1368,
"tzShift" : 0,
"utcTime" : 1548145535,
"upTime" : 62598,
"event" : "FingerEntered",
"params" : {
Hap" . O’
"session" : 1,
"direction" : "in",
"valid" : false
}

HTTP APl manual for 2N devices

Unsuccessful specification: Reading of an unset user's fingerprint

"id" @ 14,

"tzShift" : 0,
"utcTime" : 1511859513,
"upTime" : 65887,

"event" : "FingerEntered",
"params" : {
"session" : 3,

"valid" : false

122/ 199

MobKeyEntered
Signals Bluetooth reader authentication.

Event parameters:

Parameter Type

ap string
session string
direction string
authid string
uuid string
valid string

HTTP APl manual for 2N devices

Description

Access Point, available states: 0 = entry, 1 = exit.

Informs how many times the Mobile KEY
authorisation has been applied.
Passage direction:

"in" - entry

"out" - exit

""any" - any direction

Note: Set the reader passage direction via the
intercom configuration interface.

Mobile Key ID.

User's unique ID

Mobile Key validity (if available as a valid user
Mobile Key in the configuration)
false - invalid Mobile Key

true - valid Mobile Key

124/ 199

HTTP APl manual for 2N devices

Example:

"id" : 161,

"tzShift" : 0,
"utcTime" : 1548079174,
"upTime" : 1782,

"event" : "MobKeyEntered",

"params" : {
Hap" . O’
"session" : 9,
"direction" : "in",
"authid" : "48c48155eed7ealdbb0b4d534b7459b9",
"uuid" : "54877b0e-4cc3-c645-9530-6c7850f47a9c",
"valid" : true

}

125/ 199

HTTP APl manual for 2N devices

DoorStateChanged
Signals a door state change.

Event parameters:

Parameter Type Description
state string opened, closed
Example:
{
"id" : 240,

"tzShift" : 0,
"utcTime" : 1516895295,
"upTime" : 2156,

"event" : "DoorStateChanged",
"params" : {

"state" : "opened"
}

126/ 199

UserRejected

Signals user authentication rejection.

Event parameters:

Parameter
ap

session

name
uuid

reason

Example:

midvo: 173,
"tzShift" : o,

Type

string

string

string

string

string

"utcTime" : 1548079274,

"upTime" : 1882,

HTTP APl manual for 2N devices

Description

Access Point, available states: 0 = entry, 1 = exit.

Informs how many times the authorisation has
been rejected.

User name
User's unique ID

accessBlocked, switchLocked, invalidTime,
invalidProfile, invalidSequence, invalidCredential,
authinterrupted, timeout, switchDisabled

"event" : "UserRejected",
"params" : {
llapH . O,
"session" : 10,
"name" : "Joseph",
"uuid" : "54877b0e-4cc3-c645-9530-6c7850f47a9c",
"reason" : "dinvalidCredential"
}

127/ 199

DisplayTouched
Signals display touch.

Event parameters:

HTTP APl manual for 2N devices

Parameter Type
X string
y string
dx string
dy string
Example:
{
"id" @ 337,

"tzShift" : 0,
"utcTime" : 1517301424,
"upTime" : 408263,

"event" : "DisplayTouched",
"params" : {

"x" : 89,

"y" : 100,

"dx" : 0,

de" . O
}

Description

Display touch point coordinate. The maximum
value depends of the display resolution.

Display touch point coordinate.

Coordinate change due to movement on the
display; negative values are possible. The
maximum value depends of the display resolution.

Coordinate change due to movement on the
display.

128 / 199

DtmfEntered
Signals a DTMF code in the call.

HTTP APl manual for 2N devices

{
"id" : 86,
"tzShift" : 0,
"utcTime" : 1558522871,
"upTime" : 3531,
"event" : "DtmfEntered",
"params" : {
"COde" : "00" s
lltypell : Ilun—ill s
"call" : 3,
"valid" : true
3
}
Param Ty Description
eter pe
code stri Display the code characters entered.
ng
type stri Thecode type used.
M€ uni - universal switch code
user — user code
call stri CallID.
ng
valid stri Code validity (i.e. the valid universal switch code or valid user code).
"€ false - invalid code

true - valid code

1729/ 199

HTTP APl manual for 2N devices

AccessTaken

Signals that a card has been tapped in the Anti-passback area.

{
"success" : true,
"result" : {
"events" : [
]
3
3

120/ 199

HTTP APl manual for 2N devices

ApLockStateChanged

Signals an emergency lockdown state change (on/off).

{
"id" : 35,
"tzShift" : 0,
"utcTime" : 1558522465,
"upTime" : 3125,
"event" : "ApLockStateChanged",
"params" : {
llapll : O,
"state" : "in"
3
3

Parameter Type Description
ap string Access Point, available states: 0 = entry, 1 = exit.
state string Status change state.

"in" - beginning of the emergency lockdown interval

"out" - end of the emergency lockdown interval

121/ 199

HTTP APl manual for 2N devices

RexActivated
Signals the input activation set for the REX button.

{
"id" @ 29,
"tzShift" : 0,
"utcTime" : 1558522162,
"upTime" : 2822,
"event" : "RexActivated",
"params" : {
llapll : l,
"session" : 1
3
3

Parameter Type Description

ap string Access Point, available states: 0 = entry, 1 = exit.

session string Display how many times the REX button has been activated.

122/ 199

HTTP APl manual for 2N devices

LiftStatusChanged

Signals the Lift Control module connection/disconection.

{
"id" : 2871,
"tzShift" : o,
"utcTime" : 1561540370,
"upTime" : 73822,
"event" : "LiftStatusChanged",
"params" : {
"module" : 0,
"ready" : true
}
1,
Parameter Type Description
module string Display the ID module.
ready string

123/ 199

HTTP APl manual for 2N devices

LiftFloorsEnabled

Signals permanent access to a floor or permanent user access.

{
"id" : 2850,
"tzShift" : 0,
"utcTime" : 1561540011,
"upTime" : 73463,
"event" : "LiftFloorsEnabled",
"params" : {
lltypell . lluserll
"floors" : [
0, 1, 2, 3, 4
1,
"uuid" : "621a5a49-1f8b-d34c-9a8b-881055864deb",
}
s
{
"jd" : 2855,
"tzShift" : 0,
"utcTime" : 1561540016,
"upTime" : 73468,
"event" : "LiftFloorsEnabled",
"params" : {
"type" : "public"
"floors" : [
1, 4
1,
}
}s
Parameter Type Description
type string Provides information on the access type.
public - change of public access
user - user authentication
floors string Provides information on the accessible floors.

124/ 199

HTTP APl manual for 2N devices

LifConfigChanged

Signals a change in the lift control configuration.

"id" : 2860,

"tzShift" : 0,
"utcTime" : 1561540163,
"upTime" : 73615,

"event" : "LiftConfigChanged",
"params" : {

"hash" : 11
}

},

Parametr Typ Popis

hash string Unique configuration code.

125/ 199

CapabilitiesChanged
Signals a change in available functions.

{
"success":true,
"result":{
"events": [
{
"id":21,
"tzShift":0,
"utcTime":1585037151,
"upTime'":256,
"event":"CapabilitiesChanged",
"params":{
}
}
]
}
}

HTTP APl manual for 2N devices

126/ 199

HTTP APl manual for 2N devices
Paramet Type Description
er

id strin Event sequence number.

tzShift uint3 Difference between the local time and UTC in minutes.

Add this value to utcTime to get the local time of event generation
according to the time zone setting in the device:

localTime = utcTime + tzShift * 60

utcTim uint3 Absolute event generation time (Unix Time, UTC - Coordinated
e 2 Universal Time).

upTime uint3 Relative event generation time (seconds after the intercom restart).
2

event strin CapabilitiesChanged event type.

g
params obje Specific parameters of the event.
ct
5.11 api audio

The following subsections detail the HTTP functions available for the apif/audio service.

« 5.11.1 api audio test

5.11.1 api audio test

The [api/audio/test function launches an automatic test of the intecom built-in microphone
and speaker. The test result is logged as an AudioLoopTest event.

The function is part of the Audio service and the user must be assigned the Audio Control
privilege for authetication if required.

The GET or POST method can be used for this function.
The function has no parameters.

The reply is in the application/json format and includes no parameters.

137/ 199

HTTP APl manual for 2N devices
Example:

GET /api/audio/test
{

"success" : true

}

5.12 api email
The following subsections detail the HTTP functions available for the api/femail service.

« 5.12.1 api email send

5.12.1 api email send

The /api/email/send function sends an e-mail to the required address. Make sure that the SMTP
service is configured correctly for the device (i.e. correct SMTP server address, login data etc.).

The function is part of the Email service and the user must be assigned the Email Control
privilege for authentication if required.

The GET or POST method can be used for this function.

Request parameters:

Parameter Description
to Mandatory parameter specifying the delivery address.
subject Mandatory parameter specifying the subject of the message.
body Optional parameter specifying the contents of the message

(including html marks if necessary). If not completed, the
message will be delivered without any contents.

pictureCount Optional parameter specifying the count of camera images to
be enclosed. If not completed, no images are enclosed.
Parameter values: [0, 5].

timeSpan Optional parameter specifying the timespan in seconds of the
snapshots enclosed to the email. Default value: 0.

128 / 199

HTTP APl manual for 2N devices

Parameter Description
width Optional parameters specifying the resolution of camera
images to be enclosed. The image height and width must
height comply with one of the supported options (see api/camera/
caps).

The reply is in the application/json format and includes no parameters.

Example:

GET /api/email/send?to=somebody@email.com&subject=Hello&body=Hello
{

"success" : true

}

5.13 api pcap
The following subsections detail the HTTP functions available for the api/pcap service.

« 5.13.1 api pcap

« 5.13.2 api pcap restart
« 5.13.3 api pcap stop

« 5.13.4 api pcap live

« 5.13.5 api pcap live stop
« 5.13.6 api pcap live stats

5.13.1 api pcap

The [api/pcap function helps download the network interface traffic records (pcap file). You can
also use the /api/pcap/restart a [api/pcap/stop functions for network traffic control.

The function is part of the System service and the user must be assigned the System Control
privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.

The reply is in the application/json format and the downloaded file can be opened directly in
Wireshark, for example.
Example:

GET /api/pcap

120/ 199

HTTP APl manual for 2N devices

5.13.2 api pcap restart

The /api/pcap/restart function deletes all records and restarts the network interface traffic
recording.

The function is part of the System service and the user must be assigned the System Control
privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.
The reply is in the application/json format and includes no parameters.

Example:

GET /api/pcap/restart
{

"success" : true

}

5.13.3 api pcap stop
The /api/pcap/stop function stops the network interface traffic recording.

The function is part of the System service and the user must be assigned the System Control
privilege for authentication if required.

The GET or POST method can be used for this function.
The function has no parameters.
The reply is in the application/json format and includes no parameters.

Example:

GET /api/pcap/restart
{

"success" : true

}
5.13.4 api pcap live
The api/pcap/live function is used for starting of the chunked packet capture.
Service and Privileges Groups

 Service group is System.
» Privileges group is System Control.

140/ 199

HTTP APl manual for 2N devices

Methods

« GET
« POST

Request

The request contains parameters in the URL (or in the application/x-www-form-
urlencoded format when POST is used).

Table 1. Request Parameters

Parameter Mandatory Expected Default Description

Name Values Value

duration No Integer indefinitely Defines the duration of the packet
defining capture. If the parameter is omitted
duration of or 0, the duration is infinite (i.e. until
download itis stopped by api/pcap/live/
in seconds stop or the download is severed by

the target device).

Example of a Request

URL: https://192.168.1.1/api/pcap/live?duration=10

Response

The device starts streaming chunked data upon a successful request.

Example of Using Python to Download the Packet Capture

command = requests.post("https://" + address + "/api/pcap/live?duration=120",
verify=False, stream=True, auth=HTTPBasicAuth("admin", "pass")) with
open("trace.pcap", 'wb') as f: for chunk in command.iter_content(chunk_size=None):
f.write(chunk)

If a packet capture is already running, another packet capture cannot be started.

141/ 199

HTTP APl manual for 2N devices

5.13.5 api pcap live stop
The api/pcap/live/stop function is used for stopping of the chunked packet capture.

Service and Privileges Groups

 Service group is System
» Privileges group is System Control

Methods

o GET
« POST

Request

The request does not have any parameters.

Example of a Request

URL: https://192.168.1.1/api/pcap/Llive/stop

Response

The device stops streaming chunked data upon a successful request. The request can help stop
a capture without a set duration or stop a capture with a duration value prematurely.

The device replies with success : true even if there is no running capture. There are no specific
error codes for this endpoint.

5.13.6 api pcap live stats

The api/pcap/live/stats function is used for getting of status of the chunked packet capture.

Service and Privileges Groups

« Service group is System.
+ Privileges group is System Control.

Methods

o GET
« POST

142 / 199

HTTP APl manual for 2N devices

Request

The request does not have any parameters.

Example of a Request

URL: https://192.168.1.1/api/pcap/live/stats

Response

The response is in the application/json format. The response contains
the success and result keys. The result value contains detailed information on the packet
capture status.

Table 1. Response JSON Keys

Key Typical Returned Description
Values
running trueor false Indicates whether the chunked packet capture is

currently running or not.

bytesSent Integer Contains the number of bytes sent in the currently
running open packet capture. If the packet capture is
not running, the value is 0.

packetsSent Integer Contains the number of packets sent in the currently
running open packet capture. If the packet capture is
not running, the value is 0.

Example of a Response

{ "success": true, "result": { "running": true, "bytesSent": 11261, '"packetsSent": 90

I

5.14 api dir

The following subsections detail the HTTP functions available for the api/dir service.

« 5.14.1 api dir template
» 5.14.2 api dir create

142/ 199

HTTP APl manual for 2N devices

« 5.14.3 api dir update
« 5.14.4 api dir delete
« 5.14.5apidir get

« 5.14.6 api dir query

5.14.1 api dir template

The [api/dir/template function retrieves the template of an entry in the directory.

Methods

o GET
« POST

Request

Table 1. Request Parameters

Key Name Mandatory ExpectedValues DefaultValue Description

N/A - - - -

Example of a Request

https://192.168.1.1/api/dir/template

Response

The response is in the application/json format. The result object contains the
keys series and users.

Go to the topic api/dir/query to get more information on the use of the key series.

The key users contains an array with one object (entry template) that contains all available keys
of an entry in the directory with their default values for a particular device.

144/ 199

@ Tip

HTTP APl manual for 2N devices

+ You can get better acquainted with the structure of the JSON response in the
example at the end of this topic.

@ Note

+ Available keys depend on the model, type and hardware configuration of a device
(e.g. key photo is only applicable for devices that have a display and store images
in their directories).

Table 2. Response JSON Keys in the users Array

Key

uuid

deleted

owner

name

Typical
Returned
Values

Empty

false

Empty

Empty

Description

Unique User Identifier. When a new entry in the directory is

created by api/dir/create, uuid can be either provided as a

parameter of the request or automatically generated by the
device.

The format of uuid is "XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX", where X can be any hexadecimal digit. All zeroes
are reserved for an empty uuid.

Indication of whether an entry in the directory has been deleted
or not. Deleted entries remain in the directory until the maximum
number of entries is reached. Stored deleted entries preserve
uuid only for logging reasons. Two valid values: false, true.

Indication of whether an entry in the directory is remotely
managed by 2N® My2N, 2N® Access Commander or another
remote management system. This value is intended for internal
2N® TELEKOMUNIKACE a.s. usage, alternatively it can be used for
deleting a group of users (see api/dir/delete).

Name of an entry in the directory (a user or device name). A string
of up to 63 characters is expected. The name can be left empty
(the entry is in such a case identified by its uuid in logs, emails,
etc.).

145/ 199

Key

photo

email

treepath

Typical
Returned
Values

Empty

Empty

/

HTTP APl manual for 2N devices

Description

Image of an entry in the directory (e.g. user’s photo, company
logo). Saved as base64 encoded jpeg with the following syntax:
EXAMPLE: _DATA_IN_BASE64

Email address of an entry in the directory. The expected format
is namestructure@domainhierarchy.top. It is possible to enter
multiple addresses separated with commas (saved as one string).

Definition of positions of an entry in the directory on the display.

The default position is in the root folder. This position is
achieved by simply entering only one slash.
EXAMPLE: / shows the entry in a root folder

An entry may be positioned on a display several times - the
positions are separated with a semi-colon (3).

EXAMPLE: /Folder1/;/Folder2/ shows the entry both in
Folderl and Folder2

An entry may be assigned a calling group that also serves
as an alternative name in an individual position on the
display by omitting the slash at the end of the position
definition.

EXAMPLE: /Folder1/Calling Group shows the entry in
Folderl under the name "Calling Group"

An entry may be prioritized (i.e. a prioritized entry is
shown above unprioritized entries) individually in each
position by adding :1 at the end of the position definition.
EXAMPLE: /Folder1/:1;Folder2/Calling Group:1 shows the
entry prioritized in Folderl under its name and the entry
prioritized in Folder2 as "Calling Group".

Multiple entries may be assigned to one calling group
(selecting this calling group on a display results in a group
call to all the entries under the calling group).

EXAMPLE:

Entryl: /Calling Group

Entry2: /Calling Group

shows both entries in the root folder as one row named
"Calling Group" (both entries are called when this row is
selected)

146/ 199

mailto:namestructure@domainhierarchy.top

Key

virtNumbe
r

deputy

buttons

Typical
Returned
Values

Empty

Empty

Empty

HTTP APl manual for 2N devices

Description

Virtual number of an entry in the directory. Virtual numbers may
be dialed using a dialpad (if configured). The maximum length is
7 characters. The first and the last character may be chosen from
therange of Ato Z or 0 to 9. The rest of the characters may be
between 0 to 9.

Uuid of a deputy entry that is called when the original callee is
unavailable or not answering. When the deputy is not set the
deputy uuid, it remains empty.

Buttons assigned to this entry in the directory. An array of
integers (assigned according to the button position starting from
1) separated by a comma.

147/ 199

Key Typical
Returned
Values

callPos Array

HTTP APl manual for 2N devices

Description

Calling information of an entry. Entered as an array of up to three
objects, i.e. up to three sets of calling information can be entered.
Each of these three objects can contain the following keys:

+ peer - aphone number of an entry in the directory
« profiles - time profiles if this phone number is valid (a
number is not dialed when invalid)
. P=X,.Y
where X,..,Y stands for a comma-separated array
of predefined time profiles from 0 (time profile 1)
to 19 (time profile 20)
EXAMPLE: P=1,3,5 means that the predefined
profiles 2, 4 and 6 define the validity period of the
phone number
« D=A,..,.B@H:MM-H:MM
where A,..,B stands for a comma-separated array
of days of week (0 to 6 from Sunday to Saturday,
7 is Holiday), H stands for hour of the day (from 0
to 23), MM stands for minutes (from 00 to 59) -
two values defining an interval. Several
definitions may be combined separated with a
semi-colon.
EXAMPLE:
D=7@0:15-13:15;D=5,7@13:15-15:15;D=7@15:15
-23:30 means that the phone number is valid on
Holiday from 0:15 to 13:15, on Friday and Holiday
from 13:15 to 15:15 and on Holiday from 15:15 to
23:30.
EXAMPLE: D=5,7 means that the phone number
is valid on Friday and Holiday for the whole day.
+ grouped - defines whether the number is dialed in a group
call together with the previous number (the third number
is dialed with a deputy). Can be true or false.
+ ipEye - defines the IP address of the PC on which the 2N®
IP Eye application is running (used for receiving video if
the telephone does not have a display).

14R / 199

Key

access

HTTP APl manual for 2N devices

Typical Description

Returned

Values

JSON Access Control information of an entry in the directory. Contains
Object the following keys:

validFrom - definition of the start of the validity term for
the credentials of an entry in the directory. Entered in the
Unix Time format. If left empty, the validity period starts at
the beginning of the time (i.e. 00:00:00 UTC Jan 1st 1970).
validTo - definition of the end of the validity term for the
credentials of an entry in the directory. Entered in the Unix
Time format. If left empty, the validity period ends at the
end of the time (i.e. 03:14:07 UTC Jan 19th 2038).
accessPoints - contains an array of access points (two
access points, entry and exit). Each array itemis
represented as a JSON object with the following keys:

+ enabled - defines whether it is generally possible
to use this access point (i.e. if it is possible to
authenticate at that particular access point). Two
valid values: true, false.

+ profiles - defines whether it is currently possible
to use this access point (i.e. if it is possible at the
moment to authenticate at that particular access
point). The syntax of the profile definition is the
same as in callPos.

pairingExpired - defines whether the Bluetooth pairing of
an entry in the directory has expired or not. Two valid
values: true, false.

virtCard - defines the virtual card of an entry in the
directory that is relayed to Wiegand and other 3rd party
systems if there is a successful authentication of the entry
in the directory. 6 to 32 hexadecimal characters are
expected.

card - defines up to two cards of an entry in the directory
that are used for authentication. The card numbers are
written as an array of strings. 6 to 32 hexadecimal
characters are expected.

mobkey - defines the Bluetooth authentication ID of an
entry in the directory. 32 hexadecimal characters are
expected.

149/ 199

Key Typical
Returned

Values

HTTP APl manual for 2N devices

Description

fpt - fingerprint templates of an entry in the directory. An
encoded fingerprint is expected (for the details contact the
Technical Support staff).

pin - defines the pin of an entry in the directory. 2 to 15
digits are expected.

apbException - defines whether an entry in the directory
has an exception from the anti-passback policy (e.g. if so,
its credentials can be used multiple times for entry
without any exit). Two valid values: true, false.

code - defines up to three individual codes for switches.
The individual switch codes are written in an array of
strings (2 to 15 digits). The first position in the array
defines an individual code for the first switch. Input an
empty string to skip a code for the particular switch.
liftFloors - defines the configuration of accessible lift floors
upon authentication. The following formatting is
expected:

F=P,..,R@PROFILE1_DEFINITION|
F=X,..,Z@PROFILE2_DEFINITION

where P,..,R and X,..,Z are arrays of comma-separated
floors (0to 63).i0_1_1lisentered as0,io_1_5 is entered as
4,i0_2_2 isentered as 9 and so on. The arrays of floors
active in certain profiles are separated by |. Predefined
profiles or ad hoc definition of a new profile can be used
(see the syntax definition in callPos/profiles). The profile
definition part can be omitted if no profile is applied.
EXAMPLE: F=2,4 defines floors without any time profile
(user can access them any time).

EXAMPLE: F=5@P=0,7 defines that the sixth floor (F=5) is
accessible the whole day on Mondays and Holidays.
EXAMPLE: F=0@P=7,13|
F=0@D=5@9:15-11:45;,D=4@11:45-13:30 defines that the
first floor (F=0) is accessible in predefined profiles 8 and 14
(P=7,13) and in the time profile defined by the definition
string.

150/ 199

HTTP APl manual for 2N devices

Key Typical Description
Returned
Values

+ licensePlates - defines a set of license plates configured to
the user (used for opening upon license plate recognition).
Individual licensePlates are separated by a comma.
Whitespaces are ignored. A maximum of 255 characters is
allowed (including whitespaces). The array is limited to 20
license plates and each license plate may have a
maximum of 10 non-whitespace characters.

timestamp 0 A timestamp of performed changes in the directory. Timestamps
are automatically generated by the directory in an ascending
order. Go to the topic api/dir/query to get more information on
the use of the timestamp.

151/ 199

Example of a Response

"success'": true,

"result": {

"series'": ""5247939846841727056",

"users":

{

[

"uuidﬂ: "H’
"deleted": false,
"OWner": H",
"nameﬂ: "H’
"photoﬂ: H",
"emailﬂ: H",
"treepath": "\/",
"virtNumber": "",
"deputyﬂ: "H’
"buttons": "",
"callPos": [

{
"peerﬂ: "H’
"profiles": "",
"grouped": false,
"1pEyeH: nn

3,

{
"peerﬂ: "H’
"profiles": "",
"grouped": false,
"1pEyeH: nn

3,

{
"peerﬂ: "H’
"profiles": "",
"grouped": false,
"1pEyeH: nn

}

1,

"access": {
"validFrom": "@",
"validTo": "o",
"accessPoints": [

{
"enabled": true,
"profiles": ""
}s
{
"enabled": true,
"profiles": ""
}

1,

HTTP APl manual for 2N devices

152/ 199

"pairingExpired": false,
"virtCard": "",
"card": [

nn
)

1,

llmobkeyll: llll,

llfptll: llll’

llp-inll: llll’
"apbException": false,
"code": [

nn

nn
)

nn
)

1,
"licensePlates": "",
"liftFloors": ""

1,

"timestamp": 0O

5.14.2 api dir create

HTTP APl manual for 2N devices

The /api/dir/create function creates (or overwrites) an array of entries in the directory and sets

their selected fields.

Methods
.« PUT

Request

The request contains parameters in the application/json format. Go to the topic api/dir/
template to get more information on various parameters of an entry in the directory and their

representation.

152/ 199

Table 1. Request JSON Keys

Key Man
Na dat
me ory
forc No
e

use No

rs

Expected
Values

true, false

array of
JSON
objects
defining
parameters
of an entry
in the
directory

Defa
ult
Valu

fal
se

HTTP APl manual for 2N devices

Description

This key selects whether the entry in the directory
identified by uuid (see below) is overwritten by the new
set of data.

When the value for this key is set to true, a new dataset
overwrites the existing data and the remaining fields are
reset to their default values.

When itis set to false or omitted and there is an existing
entry in the directory with the specified uuid, the device
replies with error code EDIR_UUID_ALREADY_EXISTS an
d changes to the configuration are not processed.

This key does not affect a creation of a new entry in the
directory in any way.

If this key is omitted or if its value is an empty array, the
device response contains only the key series (no new
entries in the directory are created).

Itis possible to submit empty objects in the array. The
device creates an empty entry in the directory for each
empty object (it is only assigned a uuid).

If an object in the array contains the key uuid, an entry
with the specified uuid is created or modified, or the
device replies with an error code.

If an object in the array does not contain uuid, the device
creates a new entry and assign it a new uuid. The entry
parameters are set to the values according to the keys
defined in the JSON structure of a request. Study the
example below.

Go to the topic api/dir/template to get an overview of all
available keys in the JSON definition of an entry in the
directory.

154/ 199

HTTP APl manual for 2N devices

Example of Request

URL: https://192.168.1.1/api/dir/create JSON { "force": true, "users": [{ "uuid":
"01234567-89AB-CDEF-0123-456789ABCDEF", '"name": "ABCD", "email": "abcd@def.cz",

"access": { "pin": "1234" } }, { "name": "ABCD2", "owner'": "My2N", "email":
"abcd2@def.cz" }, { "uuid": "01234567-89AB-CDEF-0123-456789ABCDEF", '"name": "ABCD3",
"email": "something", "access": { "pin": "5678" }, "test": "something", "albert":

"einstein" 3}, {}, {} 1 }

If there is no entry in the directory with uuid 01234567-89AB-CDEF-0123-456789ABCDEF, the
device creates an entry in the directory with this uuid and set its parameters name, email and
access to the specified values.

If there is an entry in the directory with uuid 01234567-89AB-CDEF-0123-456789ABCDEF, the
device overwrites its parameters name, email and access to the specified values and sets all of
its other parameters to their default values (because the key force is set to true).

The device creates a second entry, assigns it a random uuid, sets its name, owner and email to
the specified values and leaves the rest of its parameters at default values.

The third entry does not overwrite the existing entry with the same uuid because there are
several errors (wrong email format, two non-existent fields referenced by test and albert).

Furthermore, two new empty entries are created (because there are two empty objects in the
array). Each is assigned a random uuid, the rest of their parameters are set to default values.

Response

The response is in the application/json format. The result object contains the
keys series and users.

Go to the topic api/dir/query to get more information on the use of the key series.

The key users contains an array of objects that contain keys and values of the result of the
request (see the table below).

@ Tip

+ You can get better acquainted with the structure of the JSON response in the
example at the end of this topic.

155/ 199

HTTP APl manual for 2N devices

Table 2. Response JSON Keys in the users Array

Key

tim
esta
mp

Typical Description

Returned

Values

uuid Unique User Identifier of a created, modified or unchanged entry.
integer A timestamp of performed changes in the directory. Go to the topic api/

dir/query to get more information on the use of the timestamp.
Timestamp is present only when a change in the directory was
successful.

156/ 199

Key

erro
rs

Typical
Returned
Values

array of
error
objects

HTTP APl manual for 2N devices

Description

An error object containing an array of all errors that
occured. errors object is present only when a change in the directory
failed.

It contains an error code in the value of the key code showing a reason
for the failure of a change in the directory.

It may contain a further specification of the error reason in the value of
the key field for error codes EDIR_FIELD_NAME_UNKNOWN and EDIR_FI
ELD_VALUE_ERROR showing which key or value violates the validation
rules.

The following error codes may be returned in a response:

e« EDIR_UUID_INVALID_FORMAT - uuidis notin the valid format
which is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where X
can be any hexadecimal digit. All zeroes are reserved as an empty
uuid.

« EDIR_UUID_ALREADY_EXISTS - an entry with the specified uuid
exists in the directory and the key force is set to false or omitted.
Therefore the requested modification cannot be performed.

« EDIR_FIELD_NAME_UNKNOWN - unknown key. The list of
available keys for a particular device can be obtained using the /
api/dir/template function.

+ EDIR_FIELD_VALUE_ERROR - the specified value does not fit
validation criteria (the value is not valid).

« EDIRLIM_USER - the directory is full.

+ EDIRLIM_PHOTO - the limit of photo storage has been reached.
New entries can be created without photos.

+ EDIRLIM_FPT - the limit of fingerprint templates storage has
been reached. New entries can be created without fingerprint
templates.

« EINCONSISTENT - thereis an inconsistency in the values of the
keys validFrom and validTo (validFrom has to be lower
than validTo).

1587 / 199

HTTP APl manual for 2N devices

Example of Response

{ "success": true, "result": { "series": "6423407687606431951", "users": [{ "uuid":
"01234567-89AB-CDEF-0123-456789ABCDEF", "timestamp": 34 3}, { "uuid":
"044197AT-54AD-7577-6EEA-787A6097263E", "timestamp": 35 }, { "errors": [{ "code":
"EDIR_FIELD_VALUE_ERROR", "field": "email" }, { "code": "EDIR_FIELD_NAME_UNKNOWN",
"field": "test" }, { "code": "EDIR_FIELD_NAME_UNKNOWN", "field": "albert" }] 3}, {
"uuid": "41970B83-21C8-45DD-8FFC-787A6097263E", "timestamp": 36 }, { "uuid":
"Q447BBAT-6E7c-420C-A654-466D43D6A067", "timestamp": 37 } 1 } }

The first entry is created with the specified uuid and fields (unspecified fields are set to their
default values). The entry gets created regardless whether there is an already existing entry with
the same uuid because the key force in the request is set to true. The timestamp of the change
is returned.

The second entry is created, assigned a random uuid and its specified fields are filled
(unspecified fields are set to their default values). The timestamp of the change is returned.

The third object in the request contained an invalid email address format. Furthermore, non-
existent fields were referenced by the keys test and albert.

The fourth and fifth entries where created successfully with randomly assigned uuids and all
fields set to default values. The timestamp in the device updated twice to reflect that. The
timestamps of the changes are returned.

@ Tip

« If the key force in the request is not set to true, any attempts to create an entry
with the existing uuid end with error code EDIR_UUID_ALREADY_EXISTS.

5.14.3 api dir update

The /api/dir/update function updates an array of entries in the directory and sets their selected
fields.

Methods
. PUT

165R / 199

HTTP APl manual for 2N devices

Request

The request contains parameters in the application/json format. Go to the topic api/dir/
template to get more information on various parameters of an entry in the directory and their
representation.

Table 1. Request JSON Keys

Key Mand Expected Values Default Description

Nam atory Value

e

user Yes array of JSON objects - The array has to contain at least one

s defining parameters of object with the key uuid, which defines
an entry in the directory the entry to be updated.

Go to the topic api/dir/template to get
an overview of all available keys in the
JSON definition of an entry in the
directory.

Example of Request

URL: https://192.168.1.1/api/dir/update JSON { "users": [{ "uuid": "01234567-89AB-
CDEF-0123-456789ABCDEF", "name": "ABCD", "email": "abcd@def.cz", "access": { "pin":
"1234" } }, { "uuid": "76543210-68FF-18CA-3210-FEDCBA987654", '"name": "ABCD2",
"owner": "My2N", "email": "abcd2@def.cz" }, { "uuid": "01234567-89A-
CDEF-0123-456789ABCDEF", "name'": "ABCD3", "owner'": "My2N", "email": "abcd3@def.cz" },
{ "uuid": "01234567-89AB-CDEF-0123-456789ABCDEF", "name": "ABCD4", "owner": "My2N",

"email": "abcd4@def.cz", "albert": "einstein" }, { "uuid": "©1234567-89AB-
CDEF-0123-456789ABCDEF", "name'": "ABCD4", "owner'": "My2N", "email": "abcd4@def.cz",
"access.pin": "hello" }] }

If there is no entry in the directory with uuid 01234567-89AB-CDEF-0123-456789ABCDEF, the
device will respond with an error code (see below). Similarly for the second uuid
76543210-68FF-18CA-3210-FEDCBAS87654.

If the entry with uuid 01234567-89AB-CDEF-0123-456789ABCDEF is present, it will update its
parameters according to the specified values for various keys. Similarly for the second uuid
76543210-68FF-18CA-3210-FEDCBA9S87654.

The third entry will not be updated (uuid has a wrong format).

150/ 199

HTTP APl manual for 2N devices

The fourth entry will not be updated (unknow field name).

The fifth entry will not be updated (wrong format of access pin).

Response

The response is in the application/json format. The result object contains the
keys series and users.

Go to the topic api/dir/query to get more information on the use of the key series.

The key users contains an array of objects that contain keys and values of the result of the
request (see the table below).

@ Tip

+ You can get better acquainted with the structure of the JSON response in the
example at the end of this topic.

Table 2. Response JSON Keys in the users Array

Key Typical Description

Returned

Values
uui uuid Unique User Identifier of a modified or unchanged entry.
d
tim integer A timestamp of performed changes in the directory. Go to the topic api/
esta dir/query to get more information on the use of the timestamp. The
mp timestamp is present only when a change in the directory was

successful.

160/ 199

Key

erro
rs

Typical
Returned
Values

array of
error
objects

HTTP APl manual for 2N devices

Description

An error object containing array of all errors that occured. errors key is
present only when a change in the directory failed.

It contains an error code in the key code showing a reason for the
failure of a change in the directory.

It may contain a further specification of the error reason in the
key field for error codes EDIR_FIELD_NAME_UNKNOWN and EDIR_FIEL
D_VALUE_ERROR showing which key or value violates the validation

rules.

The following error codes may be returned in a response:

EDIR_UUID_DOES_NOT_EXIST - entry with the given uuid does
not exist (i.e. cannot be updated).

EDIR_UUID_IS_MISSING - the mandatory key uuid is missing.
EDIR_UUID_INVALID_FORMAT -uuidis notin the valid format
which is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where X
can be any hexadecimal digit. All zeroes are reserved as an
empty uuid.

EDIR_FIELD_NAME_UNKNOWN - unknown key. The list of
available keys for a particular device can be obtained using the /
api/dir/template function.

EDIR_FIELD_VALUE_ERROR - a specified value does not fit the
validation criteria (the value is not valid).

EDIRLIM_PHOTO - the limit of the photo storage has been
reached. Photos cannot be added.

EDIRLIM_FPT - the limit of the fingerprint template storage has
been reached. Fingerprint templates cannot be added.
EINCONSISTENT - there is an inconsistency in the values of the
keys validFrom and validTo (validFrom has to be lower

than validTo).

161/ 199

HTTP APl manual for 2N devices

Example of Response

{ "success": true, "result": { "series": "6423407687606431951", "users": [{ "uuid":
"01234567-89AB-CDEF-0123-456789ABCDEF", "timestamp": 39 1}, { "uuid":
"76543210-68FF-18CA-3210-FEDCBA987654", "errors": [{ "code":
"EDIR_UUID_DOES_NOT_EXIST" } 1 }, { "uuid": "01234567-89A-CDEF-0123-456789ABCDEF",
"errors": [{ "code": "EDIR_UUID_INVALID_FORMAT" } 1 }, { "uuid": "©1234567-89AB-
CDEF-0123-456789ABCDEF", "errors": [{ "code": "EDIR_FIELD_NAME_UNKNOWN", "field":
"albert" } 1 3}, { "uuid": "01234567-89AB-CDEF-0123-456789ABCDEF", "errors": [{
"code": "EDIR_FIELD_VALUE_ERROR", "field": "access.pin" } 1 } 1 } }

The first entry in the directory is updated successfully, its uuid and timestamp of the change are
returned.

The second entry does not exist (no entry with such uuid).

The third object has a wrong format of uuid.

An unknown key albert has been passed in the fourth object.

An invalid value of PIN has been passed in the fifth object.

162 / 199

HTTP APl manual for 2N devices

5.14.4 api dir delete

The /api/dir/delete function deletes an array of entries in the directory.

Methods
« PUT

Request

The request contains parameters in the application/json format.

Table 1. Request JSON Keys

Key Mandatory Expected Values Default Description
Name Value
owne VYesifusers astring - All entries in the directory with the
r is omitted specified owner are deleted
users Yesifowner arrayof JSON - The array has to contain at least one
is omitted objects object with the key uuid, which defines
defining uuids the entry that is to be deleted.

Example of Request

URL: https://192.168.1.1/api/dir/delete JSON (owner specified) { "owner": "My2N" }
JSON (uuid specified) { "users": [{ "uuid": "01234567-89AB-
CDEF-0123-456789ABCDEF" }, { "uuid": "76543210-68FF-18CA-3210-FEDCBA987654" 1},

{ "uuid": "76543210-68FF-18-3210-FEDCBA987654" }] }

If there is no entry in the directory with the specified owner, an empty array is returned.

If there is no entry in the directory with uuid 01234567-89AB-CDEF-0123-456789ABCDEF, the
device will respond with an error code (see below). Similarly for the second uuid
76543210-68FF-18CA-3210-FEDCBA987654.

If the entry with uuid 01234567-89AB-CDEF-0123-456789ABCDEF is present, it will be deleted.
Similarly for the second uuid 76543210-68FF-18CA-3210-FEDCBA987654.

162/ 199

HTTP APl manual for 2N devices

The third uuid has a wrong format and an error is returned.

Response

The response is in the application/json format. The result object contains the
keys series and users.

Go to the topic api/dir/query to get more information on the use of the key series.

The key users contains an array of objects that contain keys uuid and timestamp.

o + You can get better acquainted with the structure of the JSON response in the
example at the end of this topic.

Table 2. Response JSON Keys in the users Array

Key Typical Description

Returned

Values
uui uuid Unique User Identifier of a deleted or unchanged entry.
d
tim integer A timestamp of performed changes in the directory. Go to the topic api/
esta dir/query to get more information on the use of the timestamp. The
mp timestamp is present only when a change in the directory was

successful.

164 / 199

HTTP APl manual for 2N devices

Key Typical Description
Returned
Values

erro array of An error object containing an array of all errors that

rs error occured. errors object is present only when a change in the directory
objects failed.

It contains an error code in the key code showing a reason for the
failure of a change in the directory.

The following error codes may be returned in a response:

+ EDIR_UUID_DOES_NOT_EXIST - entry with the given uuid does
not exist (i.e. cannot be deleted).

o EDIR_UUID_INVALID_FORMAT - uuid is notin the valid format,
which is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where X
can be any hexadecimal digit. All zeroes are reserved as an
empty uuid.

Example of Response

{ "success": true, "result": { "series": "6423407687606431951", "users": [{ "uuid":
"01234567-89AB-CDEF-0123-456789ABCDEF", "timestamp": 39 1}, { "uuid":
"76543210-68FF-18CA-3210-FEDCBA987654", "errors": [{ "code":
"EDIR_UUID_DOES_NOT_EXIST"™ } 1 3}, { "uuid": "76543210-68FF-18-3210-FEDCBA987654",
"errors": [{ "code": "EDIR_UUID_INVALID_FORMAT" } 1 } 1 } }

The first entry in the directory is deleted successfully, its uuid and timestamp of the change are
returned.

The second entry does not exist (no entry with such uuid).

The third object has a wrong format of uuid.

5.14.5 api dir get

The /api/dir/get function retrieves an array of entries in the directory and their specified fields.

Methods
« POST

165/ 199

HTTP APl manual for 2N devices

Request

The request contains parameters in the application/json format. Go to the topic api/dir/
template to get more information on various parameters of an entry in the directory and their
object representation.

Table 1. Request JSON Keys

Ke Ma Expect Default Description

y nd ed Value

Na ato Values

me ry

fie No array all Specify the names of the required fields in the response, if the

lds of fields key is not specified, all fields with non-default values are
string with returned, if an empty array is submitted, all available fields are
S non- returned. Go to the topic api/dir/template to get an overview

default of all available keys in the JSON definition of an entry in the
values directory. Unknown field names are ignored.

us No array - The array has to contain at least one object with the key uuid,
er of which defines the entry whose fields are to be returned. If the
s JSON key is missing or an empty array is submitted, an empty array

object is returned.

s

defini

ng

uuids

Example of Request

URL: https://192.168.1.1/api/dir/get JISON { "fields": ["name", "email",
"callPos.peer", "callPos[1l].grouped"], "users": [{ "uuid": "01234567-89AB-
CDEF-0123-456789ABCDEF" }, { "uuid": "76543210-68FF-18CA-3210-FEDCBA987654" 1},
{ "uuid": "76543210-68FF-18-3210-FEDCBA987654" }] }

If there is no entry in the directory with uuid 01234567-89AB-CDEF-0123-456789ABCDEF, the
device will respond with an error code (see below). Similarly for the second uuid
76543210-68FF-18CA-3210-FEDCBA9S87654.

If the entry with uuid 01234567-89AB-CDEF-0123-456789ABCDEF is present, its specified fields
(in the example name, email, phone numbers of all calling destinations and for the second

166/ 199

HTTP APl manual for 2N devices

calling destination also grouped) will be returned. Similarly for the second uuid
76543210-68FF-18CA-3210-FEDCBA987654.

The uuid 76543210-68FF-18-3210-FEDCBA987654 is in a wrong format.

Response
The response is in the application/json format. The result object contains the
keys series and users.

Go to the topic api/dir/query to get more information on the use of the object series.

The key users contains array of objects that contain keys and values of the result of the request
(see the table below).

@ Tip

+ You can get better acquinted with the structure of the JSON response in the
example at the end of this topic.

Table 2. Response JSON Keys in the users array

Key Typical Description
Name Returned
Values
uuid uuid Unique User Identifier of a found entry.
Vario various Specified fields of an entry in the directory that are returned. See
us the api/dir/template.
keys
times integer A timestamp of the last performed changes for each returned entry in
tamp the directory. Go to the topic api/dir/query to get more information

on the use of the timestamp. The timestamp is present only when an
entry in the directory is returned.

187 / 199

HTTP APl manual for 2N devices

Key Typical Description

Name Returned
Values

errors array of An error object containing an array of all errors that
error occured. errors object is present only when a change in the directory
objects failed.

It contains an error code in the key code showing a reason for the
failure of a change in the directory.

The following error codes may be returned in a response:

+ EDIR_UUID_DOES_NOT_EXIST - entry with the given uuid does
not exist (i.e. cannot be updated).

« EDIR_UUID_INVALID_FORMAT -uuidis notin the valid format
which is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", where X
can be any hexadecimal digit. All zeroes are reserved as an
empty uuid.

Example of Response

{ "success": true, "result": { "serdies": "6423407687606431951", "users": [{ "uuid":
"01234567-89AB-CDEF-0123-456789ABCDEF", '"name": "ABCD", "email": "abcd@abcd.cz",
"callPos": [{ "peer": nn }’ { "peer": nn, ”grouped”: "false" }’ { "peer": oy]’
"timestamp": 39 }, { "uuid": "76543210-68FF-18CA-3210-FEDCBA987654", "errors": [{
"code": "EDIR_UUID_DOES_NOT_EXIST" }] 3}, { "uuid": "76543210-68FF-18-3210-
FEDCBA987654", "errors": [{ "code": "EDIR_UUID_INVALID_FORMAT" } 1 3} 1 } }

The first entry in the directory is returned successfully, its uuid and timestamp are returned.

The second entry does not exist (no entry with such uuid).

The third object has a wrong format of uuid.

5.14.6 api dir query

The [api/dir/query function retrieves an array of entries in the directory defined by timestamp
iterator and their specified fields.

Methods
« POST

16R / 199

HTTP APl manual for 2N devices

Request

The request contains parameters in the application/json format. Go to the topic api/dir/
template to get more information on various parameters of an entry in the directory and their
object representation.

Table 1. Request JSON Keys

Ke Ma Expe Default Description
y nd cted Value

Na ato Valu

me ry es

se No stri curren The string represent a number of the timestamps series in the
rie ng t device. If the key is not submitted, the current device series is
s device considered. If the specified series differs from the current device
series series, the device will return its series, the highest timestamp
value and invalid timestamp.

fie No arra all Specify the names of the required fields in the response, if the key
d yof fields isnotspecified, all fields with non-default values are returned, if
s stri with an empty array is submitted, all available fields are returned. Go
ngs non- to the topic api/dir/template to get an overview of all available
defaul keysin the JSON definition of an entry in the directory. Unknown
t field names are ignored.
values

ite No JSO {"time The key defines the iterator for the query (timestamp iterator is

ra N stamp supported). The timestamp iterator has an integer value
to obj ":0} timestamp indicating the first directory entry to be returned (the
r ect last timestamp is always returned by any of api/dir/create, api/

dir/update or api/dir/delete). If the timestamp iterator value is
zero, all directory entries are returned. If the timestamp iterator
value is higher than the current timestamp value in the device,
the device will return its series, the highest timestamp value.

160/ 199

HTTP APl manual for 2N devices

Example of Request

URL: https://192.168.1.1/api/dir/query JSON { "serdjes": '"2229480630597592840",
"fields": ["name", "email", "callPos.peer", "callPos[1l].grouped"], "diterator":
{ "timestamp": 6 } }

If the series is inconsistent with the current series in the device, the device returns its current
series, the maximum value of the timestamp and invalid timestamp.

If the specified timestamp is lower than the current maximum timestamp, all the higher
timestamps are returned.

The device is capable of handling of up to 10000 unique user identifiers. Once the number of
uuids gets higher, the device returns key invalid, which indicates that there is an unknown
history of the directory (there were entries in the directory that were deleted and the device no
longer stores them).

If the specified timestamp is lower than the invalid timestamp, the device returnsits current
series, the maximum value of the timestamp and invalid timestamp.

Response

The response is in the application/json format. The result object contains the
keys series and users.

The key users contains array of objects that contain keys and values of the result of the request
(see the table below).

@ Tip
+ You can get better acquainted with the structure of the JSON response in the
example at the end of this topic.

Table 2. Response JSON Keys in the users array

Key Typical Returned Description
Name Values
uuid uuid Unique User Identifier of a found entry.

170/ 199

HTTP APl manual for 2N devices

Key Typical Returned Description

Name Values

Various various Specified fields of an entry in the directory that are returned.
keys See the api/dir/template.

timesta integer A timestamp of the last performed changes for each returned
mp entry in the directory. The timestamp is present only when an

entry in the directory is returned.

Example of Response

{ "success": true, "result": { "series": "2229480630597592840", "users": [{ "uuid":
"01234567-89AB-CDEF-0123-456789ABCDEF", '"name": "ABCD", "email": "abcd@abcd.cz",

"callPos": [{ "peer": "" }, { "peer": "", "grouped": "false" }, { "peer": "" }],
"timestamp": 7 }, { "uuid": "A6543210-68FF-18CA-3210-FEDCBA987654", '"name": "DEFG",
"email": "defgde@defg.cz", "callPos": [{ "peer": "" }, { "peer": "", "grouped":
"false" }, { "peer": "™ }], "timestamp": 9 }, { "uuid":
"044197A7-54AD-7577-6EEA-787A6097263E", '"name": "HIJK", "email": "hijkehijk.cz",
"callPos": [{ "peer": "" }, { "peer": "", "grouped": "false" }, { "peer": "" }],

"timestamp": 10 }] } }

Three entries in the directory that have timestamp higher than 6 are returned (in this case the
maximum timestamp in the directory is 10).

5.15 api mobilekey
The following subsections detail the HTTP functions available for the api/mobilekey service.

« 5.15.1 api mobilekey config

5.15.1 api mobilekey config

The api/mobilekey/config function is used for reading and writing of location IDs and
encryption keys for Bluetooth Authentication.

Service and Privileges Groups

+ Service group is APl Access Control.
+ Privileges group is Access Control.

171/ 199

Methods

+ GET - read location IDs and encryption keys
+ PUT - write location IDs or encryption keys

Request

There are no parameters used for GET request.

HTTP APl manual for 2N devices

The PUT request contains parameters in the application/json format.

Tablel. PUT Request JSON Keys

Key
Name

locati
on

keys

Mandat
ory

No

No

Expected Values

String of
maximum
length of 127
characters

Array of objects
containing
encryption keys

Default
Value

Description

location defines the specific device location
for the purpose of Bluetooth authentication.
Any string that defines the location uniquely
is accepted. The location is broadcasted by
the 2N devices and serves for selecting
relevant authentication parameters by the
Bluetooth authentication device.

keys contains encryption keys that are used
for secure communication between a 2N
device and a device used for authentication
via Bluetooth. The objects in the array have
the following keys:

« type - algorithm type, RSA is currently
supported, this key is optional,

+ key - encryption key data (DER format
encoded in Base64), use 1024 bit
encryption keys, this key is mandatory,

+ ctime - creation time represented as Unix
time 32 bit unsigned integer, this key is
optional.

172/ 199

HTTP APl manual for 2N devices

Example of PUT Request

URL: https://192.168.1.1/api/mobilekey/config JSON: { "location": "LocationUniqueID",
"keys": [{ "type": "rsa", "key":
"MIICXAIBAAKBgQCXmIX1U7TwGFW3FiDdhq7BIktIc41lg7X2IMxLE83I75S3BRPL/
7LCAefnMUILOuUyyFdeMpRoOVhVs/iPfnYPNf4AiQ041IQh8tSKDeat5IfXSMy9zXMyHeBOBg19R+/
uShyJsnLoJoB5MIDowwkOuSMIskK+dA17+3E/
Y+ujhhpCQIDAQABAOGATzHOVAUp4cDhFbgxH5Y6lun5uZgAhXCGiEgQngxBOhJ97uuV+V0QpgVa8S/
SPAzbtd2/g7YIQB/

710VDWIfUbEiuBhr6ZHwk5]j fCFFOKkmTQtEBd4bbCz+FWyoy19DUXdsLNMf8GW4eWhooX+NCqc2sflo04Nz+S
pXmgpsMIc/ECQQDk63xVNRqPCgG3fqpLVGWkQ1OwmYAIUP8MrdOAfRYfSC/
LrjX551CRj4mAnSzRQfNc1SEZz2mITkoaCcjnl1TmXAKEAqQYdjMEhIrg4LpYzqZDOF6vew/
sUcLkepktTBYCFFV+YgOrlPr7akR8XtED8X/6QHwWWciphp/50BoJ/
KRAWWGXwJIAZOYNe506pxk+mQed0AotKKOASw15A0d3KMMgzaag2k/
4sAzR8QGEi4aT4+AEngsAvV3R8tCsum06IxNdLnu51QJA06abzB1ljFXtztajDwMYwVOORO9P3eoFUtYmPEVg]
014jIQabd2R40ZiPNaw9sYHyCKdV1cS1Q7+CZqv/
QdKLWQJIBAKeoGxqcpDHVMtzgcSj31Z2z0Z8dWmgtTF7Q05boHhxtZ1SEo3Mv1licVue8UltV2XjUR6r7YueuusM
9GxhBqr5YI=", "ctime": 1608047606 }, { "type": "rsa", "key":
"MIICXQIBAAKBgQCfyMHsTjPKf3DvOOgwMrQARSUZrpt3tBy3kBvPV4R409H7Zzse7+yKwfPTddKIQOL1IrCX
06Z08SZAMotjjpMy1MIOK27ZBO5YtAYiGLLRWeLAJUkL4gixgkHeS+T8uQxLW7/
etqwU0OUPmMd94ZEZy226CHAKQW3zge2WEtuQ50CwIDAQABAOGAZCp6RYUPGpahufZ9fpmKddIqCduH4pagmfh
hNu8coHQyIqQoT9CgPKwxqhImlVxz6rCAe+1WmNrz27LT5uluJKViUOXnLV7FHG2smagjQ3rPepgOGcayphui
I1HikaBCafxnCRV/
E1Ifg08d1xK4cK858yMjpoEgDdEJi10R2qmECQQDXqtwGiXYSRNZzR90eCjrip6IIQqIJUARES1ILOLYOhkPZzCiP
Pf2IrT1JQsw6TuOZTm3NIzZOVSEdZU6s2NcKHsnAKEAvap5GacBi9EZ91siaQj/

dVA6LbUNBCo7qwRj 7SUYw6ikCvmcLjdpjR80Otwj3FTAXBOsTeWgyT42HMBpPX2dKfQIBAMc5M19nhAaFyM3dS
MmDMbpGmEUBIoLzwXWYkvNB+EsChG6aW4Snsvnx61CYY2rVR2eR1oLv+F8UL3I2XEa5rmkCQBZXhnxnF9+Iei
5y/dKxpKYFFVVdCYOMFgtHMR42SHyD2Q8R6Dvpex2M14EYJULXrOTEqz6Z75M/
CMGSF9d9K2ECQQDEffSJoyjYwY2rGbPX8N5d9yrp3HLRbH4RjFGROZChbSaA+PTQwxu2qlAsd8g7LN95Umyv 11
ddJgayDIwnJSGse", "ctime": 1608044538 }] }

The 2N devices allow up to four encryption keys to be used at one time. The first encryption key
in the array is considered to be the primary encryption key and the other encryption keys are
secondary. If a Bluetooth device authenticates itself with any secondary encryption key the 2N
device will prompt the Bluetooth device to replace its encryption key with the primary
encryption key. Because of this the newest encryption key should always be added to the
beginning of the array.

If an array of a length shorter than 4 is submitted, the missing encryption keys are deleted
(replaced with an empty object).

The key type is not mandatory. If the algorithm type is omitted, the 2N® device will
automatically assume RSA (rsa).

172/ 199

HTTP APl manual for 2N devices

The key ctime is not mandatory. If the creation time is omitted or invalid, the 2N device will
display Jan 1st 1970 00:00:00 in the configuration web and will not return ctime for this
encryption key.

Response

The response to a GET request is in the application/json format. The result object contains
keys location and keys.

The response to a PUT request does not contain any details. E.g., if there is an invalid encryption
key value, the key will not be written without any notification.

Table 2. Response to GET Request JSON Keys

Key Typical Returned Description
Values
locati String Location ID of a 2N device. The details are described in the
on Request section.

keys Array of objects The array length is always 4 (empty objects are returned for the
containing missing keys). The details and structure of objects in the array
encryption keys are described in the Request section.

174/ 199

HTTP APl manual for 2N devices

Example of Response to GET Request

{ "success": true, "result": { "location": "54-1046-0745", "keys": [{ "type": "rsa",
"key": "MIICXAIBAAKBgQCXmIX1U7wGFW3FiDdhq7BIktIc41g7X2IMxLE83I75S3BRPL/
7LCAefnMUILOuyyFdeMpRoOVhVs/iPfnYPNf4AiQ041IQh8tSKDeat5IfXSMy9zXMyHeBOBg19R+/
uShyJsnLoJoB5MJIDowwkOuSMIskK+dA17+3E/
Y+ujhhpCQIDAQABAOGATZHOVAUpP4cDhFbgxH5Y61lun5uZqAhXCGiEgQngxBOhJ97uuV+veQpgVass/
SPAzbtd2/g7YIQB/

110VDWIfUbEiuBhr6ZHwk5j fCfFOKkmTQtEBd4bbCz+FWyoy19DUXdsLNMf8GW4eWhooX+NCqc2sflo04Nz+S
pXmgpsMIc/ECQQDk63xVNRgPCgG3fgpLVGWkQ1lOwmYAIUP8MrdOAfRYfSC/
LrjX551CRj4mAnSzRQfNc1SEZz2mITkoaCcjnl1TmXAKEAqQYdjMEhIrg4LpYzqZDOF6vew/
sUcLkepktTBYCFFV+YgOr1Pr7akR8XtED8X/6QHwWWciphp/50Bod/
KRAWWGXwIAZOYNe506pxk+mQedOAotKKOASw15A0d3KMMgzaag2k/
4sAzR8QGEi4aT4+AENgsAvV3R8tCsumO06IxNdLnu51QJA06abzB1jFXtztajDwMYwVOORO9P3eoFUtYmPEVg]
014jIQabd2R40ZiPNaw9sYHyCKdV1cS1Q7+CZqv/
QdKLWQJIBAKeoGxqcpDHVMtzgcSj312z0Z8dWmgtTF7Q05boHhxtZ1SE0o3Mv1icVue8U1tV2XjUR6Gr7YueuusM
9GxhBqr5YI=", "ctime": 1608047754 }, { "type": "rsa", "key":
"MIICXQIBAAKBgQCfyMHsTjPKf3DvOOgwMrQARSUZrpt3tBy3kBvPV4R409H7Zzse7+yKwfPTddKIQOL1IrCX
06Z08SZAMotjjpMy1MOK27ZBI95YtAYiGLLRWeLAJUkL4gixgkHeS+T8uQxLW7/
etqwU0OuPmd94ZEZy226CHAKQW3zge2WEtuQ50CwIDAQABAOGAZCp6RYUPGpahufZ9fpmKddJIqCduH4pagmfh
hNu8coHQyIqQoT9CgPKwxghImlVxz6rCAe+1WmNrz27LT5uluJKViUOXnLV7FHG2smagjQ3rPepgOGecayphuii
I1lHikaBCafxnCRV/
E1Ifg08d1xK4cK858yMjpoEgDdEIT1OR2gmECQQDXqtwGiXYSRNZZR90eCjrip6IIQqIUAREILILOLYOhKPZCiP
Pf2IrT1JQsw6TuOZTm3NIzZOVSEdZU6s2NcKHsnAkEAvap5GacBi9EZ91siaQj/
dVA6LbUNBCo7qwRj7SUYw6ikCvmcLjdpjR80Otwj3FTAXBOsTeWgy T42HmMBpPX2dKfQIBAMc5M19nhAaFyM3dS
MmMDMbpGmEUBIoLzwXWYkVvNB+EsChG6aW4Snsvnx61CYY2rVR2eR1oLv+F8UL3I2XEa5rmkCQBZXhnxnF9+Iei
5y/dKxpKYFFVVdCYOMFgtHMR42SHYD2Q8R6DVpex2M14EYJULXrOTEqz6Z75M/
CcMGSF9d9K2ECQQDEffSJoyjYwY2rGbPX8N5d9yrp3HLRbH4RjFGROZzCbSaA+PTQwxu2qlAsd8g7LNI5Umyv 11
ddJgayDIwnJSGse", '"ctime'": 1608046389 }, { "type": "rsa", "key":
"MIICXQIBAAKBgQCWWXVuU2CNcUFgoqQBQ5NjaLIVEWUAFryK/
h9jfNe+gDufFS+itWsWfvyvMkUhhiidPCpgoOgqEipkYa0®q3maPKPS4CIXZBFo++JSzsgw6a/
VxHON8joHfIf6NnIECCGCcUuMAa/
HOE00Zq7uL7n2jTsyVnnDbYCUTXENh4Np9izSX23QIDAQABAOGBAI5iDFDMr fAW5pOdpgWpyv/
SXnoUsIkgOmYeu9UlzUOgrVLKVkW22Im30elyWyKwIUaid@zBXfHp7NRTkO9V1dSnS5Cnu073tye9MV5Telqj
MSBVCSPZWIK//
hulVaRAL9UTZc+1e27710B8c1Fup4uxR4b757brrcINKjT1U4Hh5AKEA4mFz+IrgTtdiLNLQdww5B3ZELma0l
+1kYgC50hvqy2TDNGGi1KGPqYmEd/4ySHBmaGnoh9ZFxnC/
ItrNEXBGdawIBAMds0d2qDdb0Sie2TpsGIs5eEUrLX6yW/
w+s704SXczCTnIXckZyj79eEOcnrTRK+SuDsN+8+wm03b9CZgx0xtcCQQCUkukOAfddRzaDvIhc2YTERPZSjb
SgNul0+LL8Fp5uht8mjbljTNATaTHK+NMaRiNBpUBMYLxzV]tr5H56wWpAKAOFXYVtECEPTQjk8bI4yufsf7
XMwSXXUTH2WAJIWeg61lwIS81Vv2Y0gmT /VuAnM89b17ynFGlbxQxt211FORR/
tAkAONIMkbD3daWYAutd0OQjzemae30009r90NZ/
Khj5tQpv8glLe6EEpYFUNQNqodNoTmkIJImMPL1Bjyx+zTspdE+C" }, { }] } %}

location is by default the serial number of a 2N device. Change it accordingly to add several
devices to one location.

175/ 199

HTTP APl manual for 2N devices

5.16 api lpr
The following subsections detail the HTTP functions available for the api/lpr service.

« 5.16.1 api lpr licenseplate
« 5.16.2 api lprimage

5.16.1 api lpr licenseplate

The api/lpr/licenseplate function is used for access control by license plate recognition.

Service and Privileges Groups

+ Service group is APl Access Control.
+ Privileges group is Access Control.

Methods
« POST

Request

The request contains parameters in the application/json format.

Table 1. Request JSON Keys

Key Mand Expe Def Description
Name atory «cted aul

Valu t
es Val
ue
lprU Yes uui - - Uuid of the licence plate recognition event generated by the
uid d License Plate Recognition system.
stri
ng
lprID Yes ID - Internally unique identifier designating one license plate in one
nu recorded car arrival. One and the same license plate can be
mb recognized multiple times within one arrival. In case the camera
er obtains more details from another recognition, the plateText will

be specified while the lprID will remain the same. Each
recognition event generates a lprUuid of its own.

176/ 199

HTTP APl manual for 2N devices

Key Mand Expe Def Description
Name atory «cted aul

Valu t
es Val
ue
acce Yes Oor - Indicates whether a vehicle with the detected license plate is
ssPoi 1 entering (0) or exiting (1) - this is important for Access Rules that
nt are applied to the eventin the 2N device.
plate Yes lice - Text of the recognized license plate that is used to identify a user
Text nse in the 2N device directory.
plat
e
stri
ng
[prDi No Oto - Defines the detected car/license plate motion direction
r 3 according to the camera direction setting.
Options:
« 0=unknown
« 1=Undefined (In or Out)
« 2=1in
+ 3=out
plate No ima No Theimage in which the license plate was recognized. The size of
Imag ge im theimage datais limited to 256 kB.
e enc ag
ode e
din
bas
e64

Example of Request

URL:
https://192.168.1.1/api/1lpr/licenseplate

JSON:

{
"lprUuid": "bc4baad9-d2cd-4706-986f-b942963bfag9f"
"lprID": 143289,

177/ 199

HTTP APl manual for 2N devices

"accessPoint": 0,

"plateText": "ABC123456",

"plateImage": /93j/4AAQSkZIRgABAQEASABIAAD//gATQ3I1YXR1ZCB3aXRoIEAITVD/
4gKwSUNDX1BSTOZITEUAAQEAAAKgbGNtcwQwAABtbnRyUKdCIFhZWiAH5AAMABIACgAHAAShY3NWTVNGVAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWXjbXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAALIKZXNGAAABIAAAAEB]j cHIOAAABYAAAADZ3dHBOAAABMAAAABRjaGFKAAA
BrAAAACxyWF1laAAAB2AAAABRiWF LaAAAB7AAAABRNWF LaAAACAAAAABRYVFIDAAACFAAAACBNVFJIDAAACFAAA
ACBiVFJIDAAACFAAAACB]jaHJtAAACNAAAACRKbW5KAAACWAAAACRKbWRKAAACTAAAACRtbHVjAAAAAAAAAAEAA
AAMZW5VUwWAAACQAAAACAECASQBNAFAATIABiAHUAaQBSAHQALQBpAG4AIABzAFIARWBChWx1YWAAAAAAAAABAA
AADGVUVVMAAAAaAAAAHABQAHUAYgBsAGKAYwWAgAEQAbwBtAGEAaQBUAABYWVogAAAAAAAA9tYAAQAAAADTLXN
mMzIAAAAAAAEMQgAABA7///MTAAAHKWAA/ZD///uh///
90gAAA9WAAMBUWF LaIAAAAAAAAG+gAAA49QAAASBYWVogAAAAAAAATIBAAA+EAAC2XFhZWiAAAAAAAAB TwAA
t4cAABjZcGFYYQAAAAAAAWAAAAIMZgAA8qCcAAALIZAAATOAAACTtjaHItAAAAAAADAAAAAKPXAABUTAAATMOAA
ImaAAAmZwWAAD1xtbHVjAAAAAAAAAAEAAAAMZWSVUWAAAAgAAAACAECASQBNAFBtbHVjAAAAAAAAAAEAAAAMZW
5VUwAAAAgAAAACAHMAUgBHAEL /
2wBDAAMCAgMCAgMDAWMEAWMEBQgFBQQEBQoHBwWYIDAOMDASKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDASXGBYUG
BIUFRT/
2wBDAQMEBAUEBQKFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUF
BQUFBT/wgARCABMAIADAREAAhEBAXEB/8QAGWAAAgMBAQEAAAAAAAAAAAAAAACFBggDBAL/
xAAaAQACAWEBAAAAAAAAAAAAAAAABQMEBgZIB/
90ADAMBAATIQAXAAAAHUx4kXairWqwAAAAAAAAAAFLrwHgkcKhqtzRps56e05KPsAD5CGNh689SOUNk75j5I/
rz2Wilh50dHZvQxUOKGTINT4 /WSOUNk65AN4Js6alDfaF5qKmPP3zGezycd3xsbH6VFelx7yRO+/
ghnyS207dds1/
J3x3570719HUr1S+0LufdAkOVNXyfbqlkzXbFx+rxXtce8kTvv4IZ8kutG601bK60blugWoCxBmnS55/
IHeetAjbalp8niGfldi4/
V4r2uPeSJI338EM+SbLxmuplyosGi6j3acZNCBrTJajPWgR3CpaablplnU5rYmP1leK9rj3kido/
BDPKkmOMXr1gOXVW1VAAgVurorOvs9aBHINut81plC3VsddfxbtMg8kTv2cdIHQImgpa3ijcAAAWZzIdZK11ZM1
ONPA7Ujmdrzr5hQWjRa9kLtsKWmRddlouaEAAAAAAAAAACRi L1vktRa6tnh75FSxgAAAAAAAAAASKUN089/8Q
AKhAAAQMDAWIGAgMAAAAAAAAABQADBAIGBWEVFzE2EhMWMzQ1EBEUMDL /
2gATAQEAAQUCrrobpL5Kpad5KKLkoouSii5KKLkoouSii5KKLkoouSii5KKLkoouSiiE5L8bjblLzeSCVUUWM
Y7smvZCK2Qit]jIqoMQbpTbdbleyEVIgSomi001lqlrDz2qFjUlXIg5S6qOILMIBKPDoT3qkSVVITRpTM1InIwtm
EQx2MaYDVOUO6vx25TJ4btBeD824Poli738pdVHusrFY1SnZshNMuP1Y/
GyRwnKP8Aqw+17vrqruSy5tU63MTRVKNQTfnXBOEsXe/
1LggNpzT+kTGMalRLMDXE2y1GomXMLgK67h9QKkLD7Xu7uTGMNnxQMnNRVFBgfOuD6JYu9/
KXVWw1Szb1lw37SGnTMglpK1lk5c782H2vd3cmNIPmL4j fybaH/AD7g+iWLvfyl1Vua/
sBc1jTSpjjYquNig42Ko7bkq3tbD7Xu7uS0IWk045UaiZGiY1lajTbiqOpArF3v5RbqlbVtX04FjcnQlydDXJ0
NcnQ1d9ys3HVbt9RgoglPpKFANf1lqLyVWyxydDVy3s+dZWLgNTfMUELQeGERKKVI/
sgj5BORbQOkAMTzDcijYhq2IatiGrYhq2IatiGrYhq2IatiGrYhg2IatiGpmO1lGpX/
xAASEQABAWAJAgcBAQEAAAAAAAABAAIDBAUQERMVM1FSEKIhMTIBcYGRIhQw/90ACAEDAQE/
AVLWAaboxesw12CzCXYLMIdgswl2CzCXYLMIdgsw12CzCXYLMIdgsw12CzCXYLMIdgoqwBNOgQN6p8nTHOj3s
alzvSFgy8T+LB14n8WDLXxP4sGTifywAu8AsGXifx0je3xcLPNYUg82myr5C5hYfZV122UZgZE2501YbnOX+1
LkF/o1i5BBwcLwqw]jDXBw91QWBsXVvYQCLi1p48KQtUWolTaTviyre76VZdtgpUzRcHI7y89TrAOQUIIVCjdHH/
SrLtVDOGgma7 LRX18LSVWLbpASRetgmOnfFIWI30qy7hIKK+fx9k2rmD1FNosLeleSTfPGz10VKnx3eHkFQ9Bq
peu5Vc69hagxb/AcotRgmoOnfFlW930qy7bKOLom/Cnpohd®AJ9P1d5eCdK9/
gNtDOGq1671VZzv7LVS29ULTFGNU2k74sq3u+1TWXbZBpN+FSKG+WTraV18udwXy7hZ fLUFNR3QXdXugHoNVL13
Ki06ZmpwDhcUygNa/
qvU+k74sq3u+1WI8Gmyj03ChbOOHEgsXj2KZGPYrMY9isxj2KpdIbPdO+ygprIowwhTyCWQvC8 THWFwukCzGPYq
kUwzDpb4CyrR6ipohMzpKkidEbnD/rHG6U3NCghELOmw1i /
ZWFHXWFHXWFHXWFHXWFHXWFHXWFHXWFHXWFHXWFHXWFHXWFHXQAH1Z/ /
xAAVEQABAWEFBgYDAQEBAAAAAAABAAIDBAUQERVREhMXUoGRITIZzQUIXFDTwIiMw/90ACAECAQE/
AeKhsOuGMhwWWxalZbFqV1lsWpWWxalZbFqVlsWpWwWxalZbFqVlsWpWwxalZbFqV1lsWpUtm4DGIojDwKs6MPkL
j7X0clvidrfxcw7rfxcw7rfxcw7rfRcw73EhoxK38XMO6bIX/
1TON4mjPgHC600owl4ePdWX8+11W8vmdimwSvGLWr8abkK/

178 / 199

HTTP APl manual for 2N devices

Gm5CnNLDg4KzZHPYWNn2VoSFOux7C4Et0IVPIvog9SeQqn9Vn2LrU4Meqy/
nOudSQuOBWpjAwbLeFxcG+JIKr5GSS/4V1/Poq79h397KjH/AAaqxgZ04BWa7GItUnkKp/
VZ91i610D0qsv59Lp6uODWPFPtN58rU6snf8kSXcUymlk8rVSU/47MDxKrv2Hf3sqPOGqO24PaswyY7/
AG5q1l8j1T+qz7F1qcGdVZfzeXVIxmf8Aap6AzM2yUyz4W8fFMijj8ovrv2Hf3sqP0Gq024xhyonbM7VL5HKN9
Vn2LrU4Meqy/
nOugPWf9gmrmRRhjhwWZQ6FZ1DoVmUOhUFSyox2PZV37Dv72VH6DVWN24HIriwhwT7Sc5hbsqn9Zn3danBnVW
WfFwuqaET022nArLINQssk1CyyTULLINQqOmMdT7WOeKqKF80peCoIzFGGG6WZCcTjGV1kmoVNRNg0244m61D5A
geYwP2wo5WSjaYf8A1kkbENp5VTOZ5Nq4Ejgt/LzHut/LzHut/LzHut/LzHut/LzHut/LzHut/LzHut/
LzHut/LzHut/LzHut/LzHut/LzHUiS7xN3//
EAEIQAAECAWEKCAWFBQAAAAAAAAIBAWAEERIFECEzNUFRKkpPREYIXNHORsSbIUMmFxcnSBgoOhwcIkQkPh8TBS
VGPw/90ACAEBAAY /ALI1QRTCqrBN3PYRLE/
Vd5F9kYQV1C3xipXULTGK1dQt8YqV1C3xipXULTGK1dQt8YqV1C3xipXULTGK1dQt8YqV1C3xipXULFGKldQt
8CFOJIdAFf1Wc3sgXAIDAkghInhqwWBbKzBcbouU/

5L111s3SOANY5hNbEoyfNbEoy fNbEoUikZKkRTOrIXkBsVM15BFKrHMIrY1FX5Z1INLgKN67iYVWCM5KZERSgkr
RUSOMShrXgFRQ8y50ub8T7b0orYIhOgjhlnVVhWn5xppx0OUVLCkZQY1loygxrQjrDgvNryEC1SGIhoUDwhFtIm
wy/
zhJyyivvkvGOIi0pFFIEXYyrBNOgjjZIRRLPEZzKp4oFxfNypEvOg9sXR9Xc7g3roeiH1i5vxPtvAy10EDYJZEa
JgSDffPhHTWkS57110CcLQKVh1JlsmlcctCBctKRc34n2xKe/
wB5YnrSqtDpEgqRlaMagqr5Fhp7M6180X+I1+kHti6Pq7ndW9dDOQ+sXN+J9t5XGrLTCLThXPpH4mccc8jY2d8
YIMXFOu8btijYAOCF2pRIXhZ1qOn5QWOVYhHAFQYbSyY2i8vniU9/vLE/OkTkvXCDiH1p+0ScxnBxQ60/
alfpB7Yuj6u53VvXQIEPrFzfifbeuegpROBEUVDDsm3Kq843SpEVESKXxXxDb1lk/1hvj8RMuveQzVb8p7/ewd/
pIfZzONVIqL/
MTVOUKH1LEt0g9sXR9Xc7q3roeiH1i5vxPtvX06A0yHpuXdZsOOwOKgKmCmiMZLa67oxktrrujGS2uu6GUmSb
Lha04Na8n8xKe/wB5Yn+kiSNVoKLlYX2pSHWHEq24KgXmht4p0jbA7Vjg6KvtrFOVX/
HPsvXQ9EPrFznPyopp2brySr7PhDA+KqLQhjmj /AFpHNH+tI50/8050/
wDKJIVWmja4K1wW35aboZ1lHId1wgrxhpTCtYmZoBUBdKqIsVTAsC30y/
DEKU4UFoq+y0Zv9aR40234PLVwpWqleugdOLQEr1w5LEtk/
GA9BQrMyQrZpp5F839VGZZonXFOZoFitpleM4Wlb111sXBOGLYYyfK7EYYfKTEYYfKTEYYfK7EYYfKTEYYfKTE
YyfKTEYYfKTEYYfKTEYYfK7EYYyfK7EYYyfK7EYsstg00gBpe//
xAANEAABAgQGAgMBAQAAAAAAAAABABEhMVHWEEFhkaHBcYEwsdHxIP/
aAAgBAQABPYEF8SSYAVUJJrxHiCLex8tGjRo0aNGjRo0aIIaYXG8jct4PpDXGOUAMIET+TgzZJIG5wZ6pfHsFd
HSVLpWt0040CEA4whgccDOr66QSZ4AEO04wGQEhgBMowFgWAJklsDHBKjk/
8AYHFE7TRpIQR4nhS19t7Bj10ePtBGNBY7AmHImyiQAmIsgNiUDFaQYTW6YOATjiYsax9BCvFGKiwVxnBJuBDJ
CS0gIzAsNd38tgm0OSZYGA5GUkcLNkctOUapzIMGCIOHLHMQDhKUEIWO0B4S4UYqLBXGcIDKELESgMOyknRDyk
Rr9PGDhUNQAJDa4cXctJA9sy1PQXLTstAhnJIGaNKNgmHR5bdRiosFcZxBiENUHc1VCZPwgDEmeicwc6x3ciZL
6XYGOseWnZaBGJz/oG4KHanb/Q/DgxUYqLBXGcRQLwuKjphJoAMhPL/
ABPnyykoTf5Du4FC5adtoE+bs3mDkhMRjAqDFBs+FpgXAP4IjDBncxhYKgEAjs614+2BDxRhYpGYV89qg+el/
e/a/v/
tNk6DgjQZDHTeRx3N5WcELYgiCIQFwWRkj64Qfkln7Vw9ogf7pdycO0wiU3AoAjzoSpH7THtETfZBKkGpZj5cuegw
1E5BNjGt5FpoJYFxnyobFX90r+6V/dK/ulf3Sv7pX90r+6V/dK/ulf3Sv7pafpg7DD//
aAAwWDAQACAAMAAAAQ5222222dFT9dTNQGNhSVN9+sNdo2ZCesNp6Jf3+sNzOtfOesNwSWFGIsVSW3WR3rwttt
ttt9iSSSSSSU/8QAIXEAAQIEBACBAQAAAAAAAAAAAQARMWGXORAhKTFBUXGBocHW4TD/
2gATAQMBAT8QJIADLGNWDD98LaDdbQbraDdbQbrabDdbQbrabdbQbrabDdbQbraDdbQboKYTENEAARBGGTMVHH1g
VYhMg63pZbkst6WTMdZbA4y5ktyWQFyBMEYAEMEURCQAJG2HRQACoO/
1g1IWIBPUhMiAzK3YLdgntuJIHzFzO9muhwRm7wWTgI6A4KEHgIdDmvIFV5gmEX1XxUHTf6wGWwGQyFkTkcnA2xCZ
BOagWJILt2C9vpV1SiJcMGoFGShpkicCIofleUKrzVMIvrioO/
1gGb1lzH1zUYZz0OyuoeB651QABgGTmWCOHHSKGEY L1WVKpKBZjZg1H4UA8cC20/F5AqvNUwi+uKg7/
WAAXxYURK5I7CDzWRN6BdP7575aQxrKLUTAMOeD6HIRhhwzOLryBVeaphF9cVB3+sPDURWFnzfk3IrfDZb4bLf
DZZ2g50S7DmqypV3IQI/
EsDlgLsiuEckFOkAuze®TFmphF9cUc80CRq1lsCAdBA8V8wuvmF18wuvmF1ksRmjNrIzIkPBuZPNAEYGYBJOE2
0S0I4918wum5VDgSV17R12jyKyvgHp/
XNuPOUJjmYkzwADAGINApTQKUOCINAPpTQKUOCTINAPTQKUOCTINApTQKUOCASDY f/
8QAIXEAAQICCgMBAQAAAAAAAAAAAQAROFEQITFBUWFxobHwgZHB4TD/

179/ 199

HTTP APl manual for 2N devices

2gATAQIBAT8QAIMEAaYLfc1PBBTWQUS8EFPBBTWQUSEFPBBTWQUS8EFPBBTWQUS8EECjNIXRDIGIQyYr05s+0BWAG
ZZSZFSZFSZFAXxYepGh8LDNSZFFGCWRBoJAD1EgSJzEaNcZqJrs80P1sJAOCeEIXZSxSxFhgOBRR3qNoXq2R6Z
sKtQ7o0AmwIaOxCdKOivUVFbc8LgMRRONF2eaCdo0TWazFA4mCgWyAzqQOSdgxPkqzOvXE4IQbF31BQYGV2HQ7w
B5E1tzwuoxFHQOXZ50022AfcFYkNa4K2CGIXCIOTIMT]jG+weynQjlhguJwW3+1FXUN6P6jjGh/R/
VsjwuoxFHQOXZ50MccWxZATUHIZza2SrcTqMGViYOH2nicFs/

pWSXx5H4hnNGIOX7EVsjwuoxFHQOXZ503j LH706xsXxClgipYIqWCKgkIqW5+TguJlwWz+1lHAAcgP6L8K2IBceEBA
AkMT7/
P1A7GDmjoalIlvZY+njQUOi3ArvGC7xgusYLrGCCsDUsyeKGNALWVCAEQxYEQCGKCAmDcbvK7xgviQigDX1fxB
dYLxTEJuBUNT61rAdsREAQsAYyoKUbFTIFTIFTIFTIFTIFTIFTIFTIFTIFTIFTIFTIFHNSTNR//
XAAKEAEAAQMEAgIDAQAAAAAAAAABEQAhMRBBUYFhoSBxMJIHxs T/
aAAgBAQABPxXAVDYhiVLYAVNI7hnAN3C8mTj8vnz58+fPnz58+fKctkm85Z5Cj5UduBYqUGRGhsipogkzZlcgm
+1gVYS8wLg31j1MgCQxuVYmiuZkSeACvWht3UyOOBKXQF7B5RsAGWgosTWICIAKrYOYHfM5keB1fQODBPgQx0
R1QcAULChPSANBIjfZK/jq/
n6kgwAoGEk3GyUe9dkpQGETcssrR6KISWQ2FZyt8EYTYon6GmNqOqZEaLkx1TSu7GXkau+DBJI56GgmuFQBAK2
wb0Gi4QAATADAYND7Rcc+haSit9fMbzVZhtiiurHTxOlcwIX0OYYjgOKRIDRLXW61mZBOZfaj4rRI56GhHwW/
gbACs3wbTNENt1l+hZmfulQ+6EN7TE9COIEX4+gA04HsgPF8P3FSOcg5JkphItLB5NF3talYIF7YDt/
vzRjaqHY9+9GR+DEnnoaB/VgRJI1+1XuoKZAASIIAMz INHPYwFDwu+yKFxWCL4bDo+C72tSoAM8qORkd691iV/
et3wGIPPQOAVC+0OQH2VALYIviwDfMmYiQ/
BQbv25MCRwi2InfRA7GqYDYMDANXx6VM6aFCqgdmHNEQRAAPKMhKCTEULNSLYMdqGrxgLwXMnZ+nROGk4SraSz
UFElTukB8DBh4kHcnG303HES80g20tAOSmwTgpYMLE4EMW20/
4k4UYR2aHLyzhYSR5IJ4NEgtSnXdIiACDAYErpZAESWZKDr /AEQKEE4iMNhFI2WOLL4JTIH1fMdw/
1YQIX4dIuVCgb6T74kgSWwA+pyumSPjX0J+UGDBgwYMGDBgwYMiFYNegNP/9k=""

}

Response
The response is in the application/json format.
Table 2. Response JSON Keys

Key Typic Description
al
Retur
ned
Value
[

suc true Thevalueis true when the requestis processed successfully. When there is an
ces , error, the value is false and additional information is available in the error
s fals key.

e

Example of Response

"success'": true

There may occur various errors (e.g. missing mandatory parameter). When Error code 13

10/ 199

HTTP APl manual for 2N devices

(parameter data are too big) is returned, the request was not processed and it is necessary to
send the request again with a smaller image or without an image.

Subsequently received duplicate valid requests are ignored (the last ten successful requests are
held in the memory). It is possible to attempt at resending a request when there is no reply from
a 2N device without the risk of a duplicate barrier opening or duplicate event logging.

5.16.2 api lprimage

The api/lpr/image function is used for getting images received from the license plate
recognition.

Service and Privileges Groups

+ Service group is APl Access Control.
« Privileges group is Access Control.

181/ 199

HTTP APl manual for 2N devices

Methods

« GET
« POST

Request

The request contains parameters in the URL.

Table 1. Request Parameters

Parame Man Expected Defau Description

ter dato Values lt

Name ry Value

plateT Yes String - Text of a recognized license plate that is used to

ext with identify which image should be returned (up to five
license images are stored). If two or more images belong to
plate text the same license plate text, the newest one is returned.

Example of Request

URL: https://192.168.1.1/api/lpr/image?plateText=ABC123456

Response
The success response is in the image/jpeg format.

There may occur various errors (e.g. missing a mandatory parameter). Errors are returned in json
with a response code 200. If there is no image associated to the submitted plate text, error 15
"no data available" is returned.

182/ 199

HTTP APl manual for 2N devices

5.17 api accesspoint blocking

The following subsections detail the HTTP functions available for the api/accesspoint/
blocking service.

« 5.17.1 api accesspoint blocking ctrl
« 5.17.2 api accesspoint blocking status
« 5.17.3 api accesspoint grantaccess

5.17.1 api accesspoint blocking ctrl

The api/accesspoint/blocking/ctrl function controls blocking of access on individual access
points.

Service and Privileges Groups
+ Service group is APl Access Control.
+ Privileges group is Access Control.

Methods
« GET
« POST

Request
The request contains parameters in the URL.

Table 1. Request URL Parameters

Paramete = Mandatory Expected Default Description
r Name Values Value
id Yes Integer (0, - Specifies the identifier of the access point
1) that is to be controlled (0 for Entry and 1 for
Exit).
action Yes String (on, - Specifies whether the blocking for the

off) corresponding access point should be
switched on or switched off.

183/ 199

HTTP APl manual for 2N devices

Example of Request

URL:
https://192.168.1.1/api/accesspoint/blocking/ctrl?id=0&action=on

Response
The response is in the application/json format.

Table 2. Response JSON Keys.

Key Typical Description
Returned
Values
success true, false Thevalueis true when the requestis processed successfully
(i.e. the access blocking is in the desired state regardless of a
change).

Example of a Response

{

"success'": true

}

There may occur various errors (e.g. missing mandatory parameter). When Error code 18 (access
point disabled) is returned, the request was not processed because the specified access point
was disabled at the time.

5.17.2 api accesspoint blocking status

The api/accesspoint/blocking/status function returns the status of access blocking for
individual access points.

Service and Privileges Groups

+ Service group is APl Access Control.
+ Privileges group is Access Control.

Methods
« GET

1R4 / 199

HTTP APl manual for 2N devices

« POST

15/ 199

HTTP APl manual for 2N devices

Request
The request contains parameters in the URL.

Table 1. Request URL Parameters

Parameter Mandatory Expected Default Description
Name Values Value
id No Integer (0, All Specifies for which access point the
1) status should be returned. If this

parameter is omitted, the access
blocking status is returned for all the
access points.

Example of Request

URL: https://192.168.1.1/api/accesspoint/blocking/status?id=0

Response

The response is in the application/json format. The value of the result key contains one

key accessPoints, which contains an array with an object for each access point (the array has
a length of 1 if an access point was specified in the request). The objects in the array contain the
following keys.

Table 2. Response JSON Keys

Key Typical Description
Returned
Values

id Integer (O, Identifies the access point (0 for Entry, 1 for Exit).
1)

blocked Boolean Contains the current status of access point blocking (true when
(true, the access point is blocked, false when the access pointis not
false) blocked).

1R6/ 199

HTTP APl manual for 2N devices

Example of Response

{ "success": true, "result": { "accessPoints": [{ "id": 0, "blocked": true }, { "id":
1, "blocked": false }] } }

There may occur various errors (e.g. insufficient privileges).

5.17.3 api accesspoint grantaccess

The api/accesspoint/grantaccess function helps grant remote access permission to a user
(employee/user or user assigned to a general group. e.g. visitor). The remote access permission
can also be granted via a specific account that clearly identifies the access granting user.

Service and Privileges Groups

« Service group is APl Access Control.
+ Privileges group is Access Control.

Methods

« GET
« POST

Request
The request contains parameters in the URL format.

Table 1. URL Request Parameters

Paramete Mandatory Expected Default Description
r Name Values Value
id Yes Integer (0, - Identifies the access point to be checked (0
1) for Arrival and 1 for Departure).
user Yes uuid - Identifies the user that initiates door opening

(and whose access settings are to be
considered).

Response

The response is in the application/json format.

1R7 / 199

HTTP APl manual for 2N devices

Table 2. JSON Response Keys

Key Typical Description
Returned
Values
success true, false Thevalueis true if the request has been processed successfully
(i.e. access blocking is in the requested state regardless of the
change).
reason invalidAp Thekeyis displayed in case the response is accessGranted:false.
, If the access is successful the key is not displayed.
invalidCr
edential,
accessBlo
cked

Example of Response

{
"success" : true,
"result" : {
"accessGranted" : false,
"reason" : "dinvalidAp"
}
}

There may occur various errors (e.g. missing mandatory parameter). Error code 18 (access point
disallowed) means that the request has not been processed because the access point was not
allowed at the time of processing.

5.18 api lift

The following subsections detail the HTTP functions available for the api/lift service.

+ 5.18.1 api lift grantaccess

5.18.1 api lift grantaccess

The api/lift/grantaccess function is used for enabling lift floors based on authorization in
another device.

Service and Privileges Groups

» Service group is APl Access Control.
» Privileges group is Access Control (Control).

1R / 199

Methods

« GET
« POST

Request

HTTP APl manual for 2N devices

The request contains parameters in the URL (or in the application/x-www-form-
urlencoded format when POST is used).

Table 1. Request JSON Keys

Key Manda Expected
Name tory Values
uuid Yes uuid

durati NO 1..600
on

Example of Request

URL:

Default Values

duration
configured in
the target
device

Description

Uuid of a user which is to be granted
access to their floors (according to the
Access Rights configuration).

Defines the floor activation time. The
default duration configured in the Switch-
On Duration parameter is used if the
duration parameter is omitted.

https://192.168.1.1/api/lift/grantaccess?user=09ebfd7d-24e4-4d58-
ad02-804ad69938a6&duration=180

Response

The response is in the application/json format.

Table 2. Response JSON Keys

Key Typical Returned
Values

success true, false

Description

The value is true when the request is processed
successfully. If there is an error, the value is false and
additional information is available in the error key.

180/ 199

HTTP APl manual for 2N devices

Example of Response

{

"success": true

}

There may occur various errors (e.g. missing mandatory parameter). When Error code 12, param:
user (User not found), is returned, the request was not processed because there is no such uuid
in the target device directory. If the submitted uuid is missing or has a wrong format, the device
will reply with error code 11 (missing mandatory parameter) or error code 12 (invalid parameter
value) respectively.

When floors are activated while being active, the longer duration will be applied (remaining time
vs new request duration).

This APl endpoint can be used for lift floor control in parallel with the standard Access Control
from another device (e.g. send the lift floor activating request from an intercom to the Access
Unit that is in the lift and interfaces directly with the relay boards).

5.19 api automation

The following subsections detail the HTTP functions available for the api/automation service.

« 5.19.1 api automation trigger

5.19.1 api automation trigger

The /api/automation/trigger function is used for the HttpTrigger automation function
activation.

The function is part of the Automation API service and the user must be assigned
the Automation Access privilege for authentication if required.

The GET method can be used for this function.
The function is set according to triggerld with request parameters.
The response is in the application/json format and provides a summary of device information:

Example:

{

"success" : true

}

5.20 api cert

The following subsections detail the HTTP functions available for the api/cert service.

1090/ 199

HTTP APl manual for 2N devices

« 5.20.1 apicertca
« 5.20.2 api cert user

5.20.1 api cert ca
The [api/cert/ca function helps you administer the CA certificates.

The function is part of the System API service and the user must be assigned the System
Control privilege for authentication if required.

The GET, PUT or DELETE method can be used for this function. The GET method returns
information about one or more CA certificates on the device. The PUT method uploads the given
CA certificates to the device. The DELETE method deletes a single CA certificate from the device.

GET method

Request parameters for GET:

Param Description
eter
id An optional string value identifying a CA certificate. The id value is user defined id,

internal id or certificate fingerprint (hash). If id is not completed, the reply includes a
long list of all user certificates in the device.

The reply is in the application/json format and can include the following parameters:

Para Description
met
er

fing Afingerprint (hash) of the certificate.
erp
rint

sub Adictionary which splits information for the Subject or the Issuer: Common Name (CN),
jet, Organization (O), Organization Unit (OU), Location (L), State (S), Country (C).

issu

er

id A string value of the previously specified certificate identification.

sta Adate identifying when this certificate started to be valid.
rtD
ate

191/ 199

Para
met
er

end
Dat

pro
tec
ted

sys
te

mU
se0
nly

HTTP APl manual for 2N devices

Description

A date identifying when this certificate will cease to be valid.

A boolean value indicating whether the certificate is protected and therefore cannot be
deleted from the device. Internal certificates with id starting with "#" are protected
and cannot be deleted.

A boolean value indicating whether the certificate should be selectable by the user as a
certificate for any service. If it is true, the certificate is not shown in the selection list.

Example 1: List of all the certificates in the device

GET /api/cert/ca //request
{ //response
"success" : true,
"result" {
"certificates" : [
{
"fingerprint" : "4deea7060d80babf1643b4e0f0104c82995075b7",
"subject" : {
"CN" : "Thawte RSA CA 2018",
"O" : "DigiCert Inc",
"ou" : "www.digicert.com",
HCH . HUS"
3,
"issuer" : {
"CN" : "DigiCert Global Root CA",
"O" : "DigiCert Inc",
"ou" : "www.digicert.com",
HCH . HUS"
}s
"startDate" : "2017-11-06T12:23:527",
"endDate" : "2027-11-06T12:23:527",
"allowRemove" : true
}s
{
"fingerprint" : "a8985d3a65e5e5c4b2d7d66d40c6dd2fb19c5436",
"subject" : {
"CN" : "DigiCert Global Root CA",
"O" : "DigiCert Inc",

192 / 199

HTTP APl manual for 2N devices

"ou" : "www.digicert.com",
"eroromust
1,
"issuer" : {
"CN" : "DigiCert Global Root CA",
"O" : "DigiCert Inc",
"ou" : "www.digicert.com",
"¢t mys”
1,
"startDate" : '"2006-11-10T00:00:00Z",
"endDate" : '"2031-11-10T00:00:00Z",
"protected" : false,
"id" ¢ "#my2n-utility",
"systemUseOnly" : true
1

]
}
}

Example 2: Get one certificate identified by id

GET /api/cert/ca?id=#my2n-utility //request
{ //response
"success" : true,
"result" : {
"certificates" : [
{
"fingerprint" : "a8985d3a65e5e5c5b2d7d66d40c6dd2fb19c5436",
"id" : "#my2n-utility",
}
]
}
}
PUT method

If one and the same certificate is already on the device, it is overwritten. It is possible to upload
multiple certificates in one PEM formatted file. It can contain any blocks, only certificates are
processed. If any of the included certificates fails to load, none are saved and the error code is
returned.

Request parameters for PUT:

Parameter Description

blob-cert A mandatory blob-cert contains the certificate in the DER or PEM
format.

102/ 199

HTTP APl manual for 2N devices

Parameter Description

id An optional string of a unique user defined identification of a
certificate. The user defined id starts with the '@' character. It must
consist of 1-40 characters of the following set: [a-z] [A-Z][0-9], _a
nd -.

If a new certificate with the same id is uploaded, the original
certificate is overwritten.

The id must not be specified when uploading multiple certificates in
one file.

The reply is in the application/json format and includes:

Parameter Description
fingerprint A fingerprint (hash) of a certificate.
replaced Afingerprint of a replaced certificate.

Example
PUT /api/cert/ca //request
{ // response
"success" : true,
"result" : {
"certificates" : [
{
"fingerprint": "9623fa25e414aa930ed22348a22d04a4c4fda26b"
3,
{
"fingerprint": "9623fa25e414aa930ed22348a22d04a4c4fda26b"
"replaced": "9623fa25e414aa930ed22348a22d04a4c4fda26c"
}
]
}
}
{ //response
"success" : false,
"error" : {
"code" : 12,
"param" : "blob-cert",
"description" : "dnvalid certificate",
"data" : "invalid_cert"
}
}

104/ 199

HTTP APl manual for 2N devices

DELETE method
Request parameters for DELETE:

Para Description
met
er

id A mandatory string value identifying a CA certificate. The id value is user defined id,
internalid or certificate fingerprint (hash). Internal certificates with id starting with "#"
are protected and cannot be deleted.

The reply is in the application/json format.

Example:

DELETE /api/cert/ca?

fingerprint=al63b11215a30f08603fd85c314327e275772b00 //request
{
"success" : true
/response
}
{
//response
"success" : false,
"error" : {
"code" : 12,
"param" : "4id",
"description" : "certificate not found",
"data": "cert_not_found"
}
}

5.20.2 api cert user
Funkce /api/cert/user function helps you administer the user certificates.

The function is part of the System API service and the user must be assigned the System
Control privilege for authentication if required.

The GET, PUT or DELETE method can be used for this function. The GET method returns
information about one or more user certificates on the device. The PUT method uploads the
given user certificate to the device. The DELETE method deletes a single user certificate from
the device.

GET method

Request parameters for GET:

105/ 199

HTTP APl manual for 2N devices

Parame Description
ter

id An optional string value identifying an user certificate. The id value is user defined
id, internal id or certificate fingerprint (hash). If id is not completed, the reply
includes a long list of all user certificates in the device.

The reply is in the application/json format and can include the following parameters:

Paramet Description
er

finger Afingerprint (hash) of the certificate.
print

subjet, Adictionary which splits information for the Subject or the Issuer: Common Name
issuer (CN), Organization (O), Organization Unit (OU), Location (L), State (S), Country (C).

id A string value of the previously specified certificate identification.

startD A date identifying when this certificate started to be valid.
ate

endDa Adate identifying when this certificate will cease to be valid.
te

protec A boolean value indicating whether the certificate is protected and therefore
ted cannot be deleted from the device. Internal certificates with id starting with "#" are
protected and cannot be deleted.

system A boolean value indicating whether the certificate should be selectable by the user
UseOnl as a certificate for any service. If it is true, the certificate is not shown in the
y selection list.

Example: Getinformation of one certificate identified by id (fingerprint)

GET /api/cert/user?id=al64b11215a30f08603fd85c314327e274772b00 //request

{ //response
"success" : true,
"result" : {
"certificates" : [
{
"fingerprint" : "al64b11215a30f08603fd85c314327e274772b00O",

"subject" : {

106/ 199

HTTP APl manual for 2N devices

"CN" : "©0-0001-0205",

"O" : "2N TELEKOMUNIKACE a.s.",
"S" : "Czech Republic",
"erororezn

1,

"issuer" : {
"CN" : "My2N Device Utility Certificate Authority",
"O" : "2N TELEKOMUNIKACE a.s.",
"S"™ : "Czech Republic",
"ctoeorez”

1,

"startDate" : '"2021-11-08T07:50:36Z",

"endDate" : '"2022-02-06T07:50:36Z",

"protected" : false,

"id" ¢ "#my2n-utility",

"systemUseOnly" : true

}
]
}
}
PUT method

If the same certificate is already on the device, it is overwritten.

Request parameters for PUT:

Parameter Description
blob-cert A mandatory blob-cert contains the certificate in DER or PEM format.
blob-pk A mandatory blob-pk contains the private key in DER or PEM format.
password An optional password contains the password for the private key.
id An optional string of an unique user defined identification of a

certificate. The user defined id starts with the '@' character. It must
consist of 1-40 characters of the set: [a-z] [A-Z][0-9], _and -.

If a new certificate with the same id is uploaded, the original
certificate is overwritten.

The reply is in the application/json format and includes:

Parameter Description

fingerprint A fingerprint (hash) of a certificate.

197 / 199

HTTP APl manual for 2N devices

Parameter Description
replaced A fingerprint of a replaced certificate.
Example
PUT /api/cert/user //request
{ //response
"success" : true,
"result" : {
"certificates" : [
{
"fingerprint": "9623fa25e414aa930ed22348a22d04a4c4fda26b"
}
]
}
}

DELETE method
Request parameters for DELETE:

Para Description
mete
r
id A mandatory string value identifying a CA certificate. The id value is user defined id,

internal id or certificate fingerprint (hash). Internal certificates with id starting with "#"
are protected and cannot be deleted.

The reply is in the application/json format.

Example

DELETE /api/cert/user?

fingerprint=4deea7060d80bacf1643b4e0f0104c82995075b7 //request
{ /1
response
"success" : true
}

108 / 199

HTTP APl manual for 2N IP intercoms

199/ 199

	HTTP API manual for 2N devices
	Content:
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	1. Introduction
	 /
	HTTP API manual for 2N devices
	1.1 HTTP API Release Notes

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	2. HTTP API Description
	 /
	HTTP API manual for 2N devices
	2.1 HTTP Methods
	2.2 Request Parameters
	2.3 Replies to Requests
	Positive Reply without Parameters

	 /
	HTTP API manual for 2N devices
	Positive Reply with Parameters
	Negative Reply at Request Error

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	3. HTTP API Services Security
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	4. User Accounts
	 /
	HTTP API manual for 2N devices
	5. Overview of HTTP API Functions
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.1 api system
	5.1.1 api system info

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.1.2 api system status

	 /
	HTTP API manual for 2N devices
	5.1.3 api system restart
	5.1.4 api system caps

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.1.5 api system time

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.1.6 api system time set

	 /
	HTTP API manual for 2N devices
	5.1.7 api system timezone

	 /
	HTTP API manual for 2N devices
	5.1.8 api system timezone caps

	 /
	HTTP API manual for 2N devices
	5.2 api firmware
	5.2.1 api firmware

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.2.2 api firmware apply

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.2.3 api firmware reject

	 /
	HTTP API manual for 2N devices
	5.3 api config
	5.3.1 api config

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.3.2 api config factoryreset
	5.3.3 api config holidays

	 /
	HTTP API manual for 2N devices
	5.4 api switch
	5.4.1 api switch caps

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.4.2 api switch status

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.4.3 api switch ctrl

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.5 api io
	5.5.1 api io caps

	 /
	HTTP API manual for 2N devices
	5.5.2 api io status

	 /
	HTTP API manual for 2N devices
	5.5.3 api io ctrl

	 /
	HTTP API manual for 2N devices
	5.6 api phone
	5.6.1 api phone status

	 /
	HTTP API manual for 2N devices
	5.6.2 api phone calllog

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.6.3 api phone config

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.7 api call
	5.7.1 api call status

	 /
	HTTP API manual for 2N devices
	5.7.2 api call dial

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.7.3 api call answer

	 /
	HTTP API manual for 2N devices
	5.7.4 api call hangup

	 /
	HTTP API manual for 2N devices
	5.8 api camera
	5.8.1 api camera caps

	 /
	HTTP API manual for 2N devices
	5.8.2 api camera snapshot

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.9 api display
	5.9.1 api display caps

	 /
	HTTP API manual for 2N devices
	5.9.2 api display image

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.10 api log
	5.10.1 api log caps

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.10.2 api log subscribe

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.10.3 api log unsubscribe
	5.10.4 api log pull

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.11 api audio
	5.11.1 api audio test

	 /
	HTTP API manual for 2N devices
	5.12 api email
	5.12.1 api email send

	 /
	HTTP API manual for 2N devices
	5.13 api pcap
	5.13.1 api pcap

	 /
	HTTP API manual for 2N devices
	5.13.2 api pcap restart
	5.13.3 api pcap stop
	5.13.4 api pcap live

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.13.5 api pcap live stop
	5.13.6 api pcap live stats

	 /
	HTTP API manual for 2N devices
	5.14 api dir

	 /
	HTTP API manual for 2N devices
	5.14.1 api dir template

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.14.2 api dir create

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.14.3 api dir update

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.14.4 api dir delete

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.14.5 api dir get

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.14.6 api dir query

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.15 api mobilekey
	5.15.1 api mobilekey config

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.16 api lpr
	5.16.1 api lpr licenseplate

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.16.2 api lpr image

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.17 api accesspoint blocking
	5.17.1 api accesspoint blocking ctrl

	 /
	HTTP API manual for 2N devices
	5.17.2 api accesspoint blocking status

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.17.3 api accesspoint grantaccess

	 /
	HTTP API manual for 2N devices
	5.18 api lift
	5.18.1 api lift grantaccess

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.19 api automation
	5.19.1 api automation trigger

	5.20 api cert

	 /
	HTTP API manual for 2N devices
	5.20.1 api cert ca

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	5.20.2 api cert user

	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /
	HTTP API manual for 2N devices
	 /

